論文の概要: OpenRANet: Neuralized Spectrum Access by Joint Subcarrier and Power Allocation with Optimization-based Deep Learning
- arxiv url: http://arxiv.org/abs/2409.12964v1
- Date: Sat, 31 Aug 2024 13:10:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 12:36:59.694949
- Title: OpenRANet: Neuralized Spectrum Access by Joint Subcarrier and Power Allocation with Optimization-based Deep Learning
- Title(参考訳): OpenRANet: 最適化に基づくディープラーニングによるサブキャリアとパワーアロケーションによるニューラル化スペクトルアクセス
- Authors: Siya Chen, Chee Wei Tan, Xiangping Zhai, H. Vincent Poor,
- Abstract要約: 次世代RANは、無線セルラーネットワークのためのAIネイティブインターフェースを備える。
本稿では,OpenRANetにおける共同サブキャリア電力配分の課題に対処する。
- 参考スコア(独自算出の注目度): 47.468242164786275
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The next-generation radio access network (RAN), known as Open RAN, is poised to feature an AI-native interface for wireless cellular networks, including emerging satellite-terrestrial systems, making deep learning integral to its operation. In this paper, we address the nonconvex optimization challenge of joint subcarrier and power allocation in Open RAN, with the objective of minimizing the total power consumption while ensuring users meet their transmission data rate requirements. We propose OpenRANet, an optimization-based deep learning model that integrates machine-learning techniques with iterative optimization algorithms. We start by transforming the original nonconvex problem into convex subproblems through decoupling, variable transformation, and relaxation techniques. These subproblems are then efficiently solved using iterative methods within the standard interference function framework, enabling the derivation of primal-dual solutions. These solutions integrate seamlessly as a convex optimization layer within OpenRANet, enhancing constraint adherence, solution accuracy, and computational efficiency by combining machine learning with convex analysis, as shown in numerical experiments. OpenRANet also serves as a foundation for designing resource-constrained AI-native wireless optimization strategies for broader scenarios like multi-cell systems, satellite-terrestrial networks, and future Open RAN deployments with complex power consumption requirements.
- Abstract(参考訳): 次世代無線アクセスネットワーク(RAN)であるOpen RANは、新たな衛星地上システムを含む、無線携帯電話ネットワークのためのAIネイティブインターフェースを提供する予定であり、その運用にディープラーニングが不可欠である。
本稿では,Open RANにおける連系サブキャリアの非凸最適化と電力配分の課題に対処し,利用者の送信データレート要件を満たしつつ,全消費電力を最小化することを目的とする。
我々は,機械学習技術と反復最適化アルゴリズムを統合した最適化に基づくディープラーニングモデルOpenRANetを提案する。
まず、疎結合、変数変換、緩和技術を通じて、元の非凸問題を凸部分確率に変換することから始める。
これらのサブプロブレムは、標準干渉関数フレームワーク内で反復法を用いて効率的に解かれ、原始双対解の導出を可能にする。
これらの解はOpenRANet内の凸最適化層としてシームレスに統合され、数値実験で示すように、機械学習と凸解析を組み合わせることで制約の順守、解の精度、計算効率を向上させる。
OpenRANetはまた、マルチセルシステム、衛星地上ネットワーク、複雑な電力消費要求を伴う将来のOpen RANデプロイメントなど、幅広いシナリオを対象とした、リソースに制約のあるAIネイティブな無線最適化戦略を設計する基盤としても機能する。
関連論文リスト
- Random Aggregate Beamforming for Over-the-Air Federated Learning in Large-Scale Networks [66.18765335695414]
本稿では,アグリゲーションエラーを最小限に抑え,選択したデバイス数を最大化する目的で,共同装置の選択とアグリゲーションビームフォーミング設計について検討する。
コスト効率のよい方法でこの問題に取り組むために,ランダムな集合ビームフォーミング方式を提案する。
また, 得られた集計誤差と, デバイス数が大きい場合に選択したデバイス数についても解析を行った。
論文 参考訳(メタデータ) (2024-02-20T23:59:45Z) - Over-the-Air Federated Learning via Second-Order Optimization [37.594140209854906]
フェデレートラーニング(FL)は、無線ネットワーク上でのタスク指向のデータトラフィックを、限られた無線リソースによって引き起こす可能性がある。
本稿では,通信ラウンドを同時に削減し,低レイテンシなグローバルモデルアグリゲーションを実現するために,空対2次フェデレーション最適化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-03-29T12:39:23Z) - Resource-constrained Federated Edge Learning with Heterogeneous Data:
Formulation and Analysis [8.863089484787835]
ヘテロジニアスデータによる不均一な統計的課題を解決するために, 分散されたニュートン型ニュートン型トレーニングスキームであるFedOVAを提案する。
FedOVAはマルチクラス分類問題をより単純なバイナリ分類問題に分解し、アンサンブル学習を用いてそれぞれの出力を結合する。
論文 参考訳(メタデータ) (2021-10-14T17:35:24Z) - Deep Learning Methods for Joint Optimization of Beamforming and
Fronthaul Quantization in Cloud Radio Access Networks [12.838832724944615]
クラウド無線ネットワーク(C-RAN)システムでは,AP間の協調ビームフォーミングとフロントハウライズ戦略が不可欠である。
非次元量問題は、AP当たりの電力とフロントホール容量の制約から導かれる。
我々は、よく訓練された深層ニューラルネットワーク(DNN)が存在する深層学習最適化モジュールについて検討する。
提案手法の利点を数値計算により検証した。
論文 参考訳(メタデータ) (2021-07-06T10:27:43Z) - Data-Driven Random Access Optimization in Multi-Cell IoT Networks with
NOMA [78.60275748518589]
非直交多重アクセス(NOMA)は、5Gネットワーク以降で大規模なマシンタイプ通信(mMTC)を可能にする重要な技術です。
本稿では,高密度空間分散マルチセル無線IoTネットワークにおけるランダムアクセス効率向上のために,NOMAを適用した。
ユーザ期待容量の幾何学的平均を最大化するために,各IoTデバイスの伝送確率を調整したランダムチャネルアクセス管理の新たな定式化を提案する。
論文 参考訳(メタデータ) (2021-01-02T15:21:08Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
モバイルエッジコンピューティング(MEC)は、AIアプリケーションに自然なプラットフォームを提供します。
再構成可能なインテリジェントサーフェス(RIS)の助けを借りて、MECで機械学習タスクを実行するインフラストラクチャを提示します。
具体的には,モバイルユーザの送信パワー,基地局のビームフォーミングベクトル,risの位相シフト行列を共同で最適化することにより,参加ユーザの学習誤差を最小化する。
論文 参考訳(メタデータ) (2020-12-25T07:08:50Z) - A Compressive Sensing Approach for Federated Learning over Massive MIMO
Communication Systems [82.2513703281725]
フェデレートラーニング(Federated Learning)は、無線デバイスとのコラボレーションによって、中央サーバでグローバルモデルをトレーニングするための、プライバシ保護のアプローチである。
本稿では,大規模マルチインプット多出力通信システム上でのフェデレーション学習のための圧縮センシング手法を提案する。
論文 参考訳(メタデータ) (2020-03-18T05:56:27Z) - Channel Assignment in Uplink Wireless Communication using Machine
Learning Approach [54.012791474906514]
本稿では,アップリンク無線通信システムにおけるチャネル割り当て問題について検討する。
我々の目標は、整数チャネル割り当て制約を受ける全ユーザの総和率を最大化することです。
計算複雑性が高いため、機械学習アプローチは計算効率のよい解を得るために用いられる。
論文 参考訳(メタデータ) (2020-01-12T15:54:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。