OpenRANet: Neuralized Spectrum Access by Joint Subcarrier and Power Allocation with Optimization-based Deep Learning
- URL: http://arxiv.org/abs/2409.12964v1
- Date: Sat, 31 Aug 2024 13:10:48 GMT
- Title: OpenRANet: Neuralized Spectrum Access by Joint Subcarrier and Power Allocation with Optimization-based Deep Learning
- Authors: Siya Chen, Chee Wei Tan, Xiangping Zhai, H. Vincent Poor,
- Abstract summary: Next-generation RANs will feature an AI-native interface for wireless cellular networks.
In this paper, we address the challenge of making joint subcarrier power allocation in OpenRANet.
- Score: 47.468242164786275
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The next-generation radio access network (RAN), known as Open RAN, is poised to feature an AI-native interface for wireless cellular networks, including emerging satellite-terrestrial systems, making deep learning integral to its operation. In this paper, we address the nonconvex optimization challenge of joint subcarrier and power allocation in Open RAN, with the objective of minimizing the total power consumption while ensuring users meet their transmission data rate requirements. We propose OpenRANet, an optimization-based deep learning model that integrates machine-learning techniques with iterative optimization algorithms. We start by transforming the original nonconvex problem into convex subproblems through decoupling, variable transformation, and relaxation techniques. These subproblems are then efficiently solved using iterative methods within the standard interference function framework, enabling the derivation of primal-dual solutions. These solutions integrate seamlessly as a convex optimization layer within OpenRANet, enhancing constraint adherence, solution accuracy, and computational efficiency by combining machine learning with convex analysis, as shown in numerical experiments. OpenRANet also serves as a foundation for designing resource-constrained AI-native wireless optimization strategies for broader scenarios like multi-cell systems, satellite-terrestrial networks, and future Open RAN deployments with complex power consumption requirements.
Related papers
- Random Aggregate Beamforming for Over-the-Air Federated Learning in Large-Scale Networks [66.18765335695414]
We consider a joint device selection and aggregate beamforming design with the objectives of minimizing the aggregate error and maximizing the number of selected devices.
To tackle the problems in a cost-effective manner, we propose a random aggregate beamforming-based scheme.
We additionally use analysis to study the obtained aggregate error and the number of the selected devices when the number of devices becomes large.
arXiv Detail & Related papers (2024-02-20T23:59:45Z) - Over-the-Air Federated Learning via Second-Order Optimization [37.594140209854906]
Federated learning (FL) could result in task-oriented data traffic flows over wireless networks with limited radio resources.
We propose a novel over-the-air second-order federated optimization algorithm to simultaneously reduce the communication rounds and enable low-latency global model aggregation.
arXiv Detail & Related papers (2022-03-29T12:39:23Z) - Resource-constrained Federated Edge Learning with Heterogeneous Data:
Formulation and Analysis [8.863089484787835]
We propose a distributed approximate Newton-type Newton-type training scheme, namely FedOVA, to solve the heterogeneous statistical challenge brought by heterogeneous data.
FedOVA decomposes a multi-class classification problem into more straightforward binary classification problems and then combines their respective outputs using ensemble learning.
arXiv Detail & Related papers (2021-10-14T17:35:24Z) - Deep Learning Methods for Joint Optimization of Beamforming and
Fronthaul Quantization in Cloud Radio Access Networks [12.838832724944615]
Cooperative beamforming across points (APs) and fronthaulization strategies are essential for cloud radio network (C-RAN) systems.
Non-dimensional quantity problem is stemmed from per-AP power and fronthaul capacity constraints.
We investigate a deep learning optimization module is where well-trained deep neural network (DNN)
Numerical results validate the advantages of the proposed learning solution.
arXiv Detail & Related papers (2021-07-06T10:27:43Z) - Data-Driven Random Access Optimization in Multi-Cell IoT Networks with
NOMA [78.60275748518589]
Non-orthogonal multiple access (NOMA) is a key technology to enable massive machine type communications (mMTC) in 5G networks and beyond.
In this paper, NOMA is applied to improve the random access efficiency in high-density spatially-distributed multi-cell wireless IoT networks.
A novel formulation of random channel access management is proposed, in which the transmission probability of each IoT device is tuned to maximize the geometric mean of users' expected capacity.
arXiv Detail & Related papers (2021-01-02T15:21:08Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z) - A Compressive Sensing Approach for Federated Learning over Massive MIMO
Communication Systems [82.2513703281725]
Federated learning is a privacy-preserving approach to train a global model at a central server by collaborating with wireless devices.
We present a compressive sensing approach for federated learning over massive multiple-input multiple-output communication systems.
arXiv Detail & Related papers (2020-03-18T05:56:27Z) - Channel Assignment in Uplink Wireless Communication using Machine
Learning Approach [54.012791474906514]
This letter investigates a channel assignment problem in uplink wireless communication systems.
Our goal is to maximize the sum rate of all users subject to integer channel assignment constraints.
Due to high computational complexity, machine learning approaches are employed to obtain computational efficient solutions.
arXiv Detail & Related papers (2020-01-12T15:54:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.