論文の概要: Improving generalisability of 3D binding affinity models in low data regimes
- arxiv url: http://arxiv.org/abs/2409.12995v1
- Date: Thu, 19 Sep 2024 13:54:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 12:25:44.098526
- Title: Improving generalisability of 3D binding affinity models in low data regimes
- Title(参考訳): 低データ状態における3次元結合親和性モデルの一般化性の向上
- Authors: Julia Buhmann, Ward Haddadin, Lukáš Pravda, Alan Bilsland, Hagen Triendl,
- Abstract要約: PDBBindデータセットの新たな分割を導入し、列車とテストセット間の類似性リークを最小限にする。
一般に、3次元グローバルモデルが低データ構造におけるタンパク質特異的局所モデルよりも優れていることを実証する。
この研究は、結合親和性モデリングのためのGNNアーキテクチャの可能性を解き放つための、有望な新しいアプローチをもたらすと信じている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predicting protein-ligand binding affinity is an essential part of computer-aided drug design. However, generalisable and performant global binding affinity models remain elusive, particularly in low data regimes. Despite the evolution of model architectures, current benchmarks are not well-suited to probe the generalisability of 3D binding affinity models. Furthermore, 3D global architectures such as GNNs have not lived up to performance expectations. To investigate these issues, we introduce a novel split of the PDBBind dataset, minimizing similarity leakage between train and test sets and allowing for a fair and direct comparison between various model architectures. On this low similarity split, we demonstrate that, in general, 3D global models are superior to protein-specific local models in low data regimes. We also demonstrate that the performance of GNNs benefits from three novel contributions: supervised pre-training via quantum mechanical data, unsupervised pre-training via small molecule diffusion, and explicitly modeling hydrogen atoms in the input graph. We believe that this work introduces promising new approaches to unlock the potential of GNN architectures for binding affinity modelling.
- Abstract(参考訳): タンパク質-リガンド結合親和性を予測することは、コンピュータ支援薬物設計の重要な部分である。
しかし、一般的なグローバルバインディング親和性モデルは、特に低データレシエーションにおいて、解明され続けている。
モデルアーキテクチャの進化にもかかわらず、現在のベンチマークは3次元結合親和性モデルの一般化可能性を調べるのに適していない。
さらに、GNNのような3Dグローバルアーキテクチャは、パフォーマンスの期待に応えていない。
これらの問題を調査するために,PDBBindデータセットの新たな分割を導入し,列車とテストセット間の類似性リークを最小限に抑えるとともに,各種モデルアーキテクチャの公平かつ直接的な比較を可能にする。
この低類似性分割では、一般に3次元グローバルモデルが低データ構造におけるタンパク質特異的局所モデルよりも優れていることが示される。
また、GNNの性能は、量子力学的データによる教師付き事前学習、小さな分子拡散による教師なし事前学習、入力グラフにおける水素原子を明示的にモデル化することの3つの新しい貢献によってもたらされることを示した。
この研究は、結合親和性モデリングのためのGNNアーキテクチャの可能性を解き放つための、有望な新しいアプローチをもたらすと信じている。
関連論文リスト
- On Machine Learning Approaches for Protein-Ligand Binding Affinity Prediction [2.874893537471256]
本研究では,タンパク質-リガンド結合親和性予測における古典的木モデルと高度なニューラルネットワークの性能を評価する。
2次元モデルと3次元モデルを組み合わせることで、現在の最先端のアプローチを超えて、アクティブな学習結果が向上することを示す。
論文 参考訳(メタデータ) (2024-07-15T13:06:00Z) - SPIN: SE(3)-Invariant Physics Informed Network for Binding Affinity Prediction [3.406882192023597]
タンパク質-リガンド結合親和性の正確な予測は、薬物開発に不可欠である。
伝統的な手法は、しばしば複合体の空間情報を正確にモデル化するのに失敗する。
この課題に適用可能な様々な帰納バイアスを組み込んだモデルSPINを提案する。
論文 参考訳(メタデータ) (2024-07-10T08:40:07Z) - DA-Flow: Dual Attention Normalizing Flow for Skeleton-based Video Anomaly Detection [52.74152717667157]
本稿では,DAM(Dual Attention Module)と呼ばれる軽量モジュールを提案する。
フレームアテンション機構を使用して、最も重要なフレームを識別し、スケルトンアテンション機構を使用して、最小パラメータとフロップで固定されたパーティション間の広範な関係をキャプチャする。
論文 参考訳(メタデータ) (2024-06-05T06:18:03Z) - 3D Hand Reconstruction via Aggregating Intra and Inter Graphs Guided by
Prior Knowledge for Hand-Object Interaction Scenario [8.364378460776832]
モデルベースおよびモデルフリーアプローチの利点を生かした3次元ハンドリコンストラクションネットワークを提案する。
まず,2次元関節から直接のMANOポーズパラメータ回帰モジュールを提案する。
論文 参考訳(メタデータ) (2024-03-04T05:11:26Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
補間系の性能に影響を及ぼす要因を特徴付ける一般モデルのクラスに対して,PAC-Bayes境界がいかに得られるかを示す。
オーバーパラメータ化モデルに対するテスト誤差が、モデルとパラメータの初期化スキームの組み合わせによって課される暗黙の正規化の品質に依存するかの定量化を行う。
論文 参考訳(メタデータ) (2023-11-13T01:48:08Z) - Discrete Diffusion Modeling by Estimating the Ratios of the Data Distribution [67.9215891673174]
離散空間に対するスコアマッチングを自然に拡張する新たな損失として,スコアエントロピーを提案する。
標準言語モデリングタスク上で,Score Entropy Discrete Diffusionモデルをテストする。
論文 参考訳(メタデータ) (2023-10-25T17:59:12Z) - 3D Equivariant Diffusion for Target-Aware Molecule Generation and
Affinity Prediction [9.67574543046801]
標的薬物設計における3D構造の導入は、他の標的のないモデルよりも優れた性能を示す。
上記の課題を解決するために,3次元同変拡散モデルを開発した。
我々のモデルは、より現実的な3D構造とタンパク質標的に対する親和性を持つ分子を生成し、再学習することなく結合親和性ランキングと予測を改善することができる。
論文 参考訳(メタデータ) (2023-03-06T23:01:43Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Post-mortem on a deep learning contest: a Simpson's paradox and the
complementary roles of scale metrics versus shape metrics [61.49826776409194]
我々は、ニューラルネットワーク(NN)モデルの一般化精度を予測するために、コンテストで公に利用可能にされたモデルのコーパスを分析する。
メトリクスが全体としてよく機能するが、データのサブパーティションではあまり機能しない。
本稿では,データに依存しない2つの新しい形状指標と,一連のNNのテスト精度の傾向を予測できるデータ依存指標を提案する。
論文 参考訳(メタデータ) (2021-06-01T19:19:49Z) - Mix Dimension in Poincar\'{e} Geometry for 3D Skeleton-based Action
Recognition [57.98278794950759]
グラフ畳み込みネットワーク(GCN)はすでに、不規則なデータをモデル化する強力な能力を実証している。
本稿では,ポアンカー幾何学を用いて定義した空間時空間GCNアーキテクチャを提案する。
提案手法を,現在最大規模の2つの3次元データセット上で評価する。
論文 参考訳(メタデータ) (2020-07-30T18:23:18Z) - Single-Layer Graph Convolutional Networks For Recommendation [17.3621098912528]
Graph Convolutional Networks (GCNs) は、推奨タスクで最先端のパフォーマンスを達成した。
既存のGCNモデルでは、関連するすべてのノード間で再帰アグリゲーションを行う傾向があり、計算上の重荷が発生する。
DA類似性によってフィルタリングされた隣人からの情報を集約し,ノード表現を生成するための単一のGCN層を提案する。
論文 参考訳(メタデータ) (2020-06-07T14:38:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。