論文の概要: Overlap-aware meta-learning attention to enhance hypergraph neural networks for node classification
- arxiv url: http://arxiv.org/abs/2503.07961v1
- Date: Tue, 11 Mar 2025 01:38:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 19:17:19.830462
- Title: Overlap-aware meta-learning attention to enhance hypergraph neural networks for node classification
- Title(参考訳): ノード分類のためのハイパーグラフニューラルネットワーク強化のためのオーバーラップ認識型メタラーニングアテンション
- Authors: Murong Yang, Shihui Ying, Xin-Jian Xu,
- Abstract要約: ハイパーグラフニューラルネットワーク(OMA-HGNN)のための新しいフレームワークを提案する。
まず、構造的類似性と特徴的類似性の両方を統合するハイパーグラフアテンション機構を導入し、特に、それぞれの損失をHGNNモデルの重み付け要素と線形に結合する。
第2に,ノードを様々な重複レベルに基づいて異なるタスクに分割し,対応する重み付け因子を決定するマルチタスク・メタウェイト・ネット(MWN)を開発する。
第3に、内部MWNモデルを外部HGNNモデルからの損失で共同訓練し、重み付き因子で外部モデルを訓練する。
- 参考スコア(独自算出の注目度): 7.822666400307049
- License:
- Abstract: Although hypergraph neural networks (HGNNs) have emerged as a powerful framework for analyzing complex datasets, their practical performance often remains limited. On one hand, existing networks typically employ a single type of attention mechanism, focusing on either structural or feature similarities during message passing. On the other hand, assuming that all nodes in current hypergraph models have the same level of overlap may lead to suboptimal generalization. To overcome these limitations, we propose a novel framework, overlap-aware meta-learning attention for hypergraph neural networks (OMA-HGNN). First, we introduce a hypergraph attention mechanism that integrates both structural and feature similarities. Specifically, we linearly combine their respective losses with weighted factors for the HGNN model. Second, we partition nodes into different tasks based on their diverse overlap levels and develop a multi-task Meta-Weight-Net (MWN) to determine the corresponding weighted factors. Third, we jointly train the internal MWN model with the losses from the external HGNN model and train the external model with the weighted factors from the internal model. To evaluate the effectiveness of OMA-HGNN, we conducted experiments on six real-world datasets and benchmarked its perfor-mance against nine state-of-the-art methods for node classification. The results demonstrate that OMA-HGNN excels in learning superior node representations and outperforms these baselines.
- Abstract(参考訳): ハイパーグラフニューラルネットワーク(HGNN)は、複雑なデータセットを分析するための強力なフレームワークとして登場したが、その実用的性能はしばしば制限されている。
一方、既存のネットワークは通常、メッセージパッシング中に構造的または特徴的類似性に焦点を当て、単一のタイプのアテンションメカニズムを使用する。
一方、現在のハイパーグラフモデルの全てのノードが同じレベルの重複を持つと仮定すると、最適下一般化につながる可能性がある。
これらの制約を克服するために,ハイパーグラフニューラルネットワーク(OMA-HGNN)のための重複認識型メタラーニングアテンションを提案する。
まず、構造的および特徴的類似性の両方を統合するハイパーグラフアテンション機構を導入する。
具体的には、各損失をHGNNモデルに対する重み付け要素と線形に結合する。
第2に,ノードを様々な重複レベルに基づいて異なるタスクに分割し,対応する重み付け因子を決定するマルチタスク・メタウェイト・ネット(MWN)を開発する。
第3に、内部MWNモデルを外部HGNNモデルから損失を伴って共同訓練し、内部モデルから重み付き因子で外部モデルを訓練する。
OMA-HGNNの有効性を評価するため、6つの実世界のデータセットを用いて実験を行い、ノード分類のための9つの最先端手法に対してそのパーフォルマンスをベンチマークした。
その結果、OMA-HGNNは優れたノード表現の学習に優れ、これらのベースラインよりも優れていた。
関連論文リスト
- Graph as a feature: improving node classification with non-neural graph-aware logistic regression [2.952177779219163]
Graph-aware Logistic Regression (GLR) はノード分類タスク用に設計された非神経モデルである。
GNNにアクセスできる情報のごく一部しか使わない従来のグラフアルゴリズムとは異なり、提案モデルではノードの特徴とエンティティ間の関係を同時に活用する。
論文 参考訳(メタデータ) (2024-11-19T08:32:14Z) - Scalable and Consistent Graph Neural Networks for Distributed Mesh-based Data-driven Modeling [0.0]
この研究は、メッシュベースのモデリングアプリケーションのための分散グラフニューラルネットワーク(GNN)方法論を開発する。
一貫性とは、1つのランク(1つの大きなグラフ)で訓練され評価されたGNNが、複数のランク(分割グラフ)での評価と算術的に等価であるという事実を指す。
NekRSメッシュのパーティショニングが分散GNNトレーニングと推論ルーチンにどのようにリンクできるかを示し、スケーラブルなメッシュベースのデータ駆動モデリングワークフローを実現する。
論文 参考訳(メタデータ) (2024-10-02T15:22:27Z) - Generalization of Graph Neural Networks is Robust to Model Mismatch [84.01980526069075]
グラフニューラルネットワーク(GNN)は、その一般化能力によってサポートされている様々なタスクにおいて、その効果を実証している。
本稿では,多様体モデルから生成される幾何グラフで動作するGNNについて検討する。
本稿では,そのようなモデルミスマッチの存在下でのGNN一般化の堅牢性を明らかにする。
論文 参考訳(メタデータ) (2024-08-25T16:00:44Z) - Hyperbolic Benchmarking Unveils Network Topology-Feature Relationship in GNN Performance [0.5416466085090772]
グラフ機械学習のための総合的なベンチマークフレームワークを導入する。
我々は,現実的なトポロジ特性とノード特徴ベクトルを持つ合成ネットワークを生成する。
その結果,ネットワーク構造とノード特徴間の相互作用にモデル性能が依存していることが明らかになった。
論文 参考訳(メタデータ) (2024-06-04T20:40:06Z) - From Hypergraph Energy Functions to Hypergraph Neural Networks [94.88564151540459]
パラメータ化されたハイパーグラフ正規化エネルギー関数の表現型族を示す。
次に、これらのエネルギーの最小化がノード埋め込みとして効果的に機能することを実証する。
提案した双レベルハイパーグラフ最適化と既存のGNNアーキテクチャを共通的に用いている。
論文 参考訳(メタデータ) (2023-06-16T04:40:59Z) - EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural
Networks [51.42338058718487]
グラフニューラルネットワーク(GNN)は、グラフ機械学習における有望なパフォーマンスについて、広範な研究の注目を集めている。
GCNやGPRGNNのような既存のアプローチは、テストグラフ上のホモフィリな変化に直面しても堅牢ではない。
偶数多項式グラフフィルタに対応するスペクトルGNNであるEvenNetを提案する。
論文 参考訳(メタデータ) (2022-05-27T10:48:14Z) - A Variational Edge Partition Model for Supervised Graph Representation
Learning [51.30365677476971]
本稿では,重なり合うノード群間の相互作用を集約することで,観測されたエッジがどのように生成されるかをモデル化するグラフ生成プロセスを提案する。
それぞれのエッジを複数のコミュニティ固有の重み付きエッジの和に分割し、コミュニティ固有のGNNを定義する。
エッジを異なるコミュニティに分割するGNNベースの推論ネットワーク,これらのコミュニティ固有のGNN,およびコミュニティ固有のGNNを最終分類タスクに組み合わせたGNNベースの予測器を共同で学習するために,変分推論フレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-07T14:37:50Z) - Explicit Pairwise Factorized Graph Neural Network for Semi-Supervised
Node Classification [59.06717774425588]
本稿では,グラフ全体を部分的に観測されたマルコフ確率場としてモデル化するEPFGNN(Explicit Pairwise Factorized Graph Neural Network)を提案する。
出力-出力関係をモデル化するための明示的なペアワイズ要素を含み、入力-出力関係をモデル化するためにGNNバックボーンを使用する。
本研究では,グラフ上での半教師付きノード分類の性能を効果的に向上できることを示す。
論文 参考訳(メタデータ) (2021-07-27T19:47:53Z) - Hierarchical Message-Passing Graph Neural Networks [12.207978823927386]
本稿では,新しい階層型メッセージパッシンググラフニューラルネットワークフレームワークを提案する。
鍵となるアイデアは、フラットグラフ内のすべてのノードをマルチレベルなスーパーグラフに再編成する階層構造を生成することである。
階層型コミュニティ対応グラフニューラルネットワーク(HC-GNN)と呼ばれる,このフレームワークを実装した最初のモデルを提案する。
論文 参考訳(メタデータ) (2020-09-08T13:11:07Z) - Beyond Homophily in Graph Neural Networks: Current Limitations and
Effective Designs [28.77753005139331]
半教師付きノード分類タスクにおけるグラフニューラルネットワークのヘテロフィリーまたは低ホモフィリー下での表現力について検討する。
多くの人気のあるGNNは、この設定を一般化することができず、グラフ構造を無視したモデルよりも優れています。
ヘテロフィリーの下でのグラフ構造からの学習を促進する重要な設計の集合を同定する。
論文 参考訳(メタデータ) (2020-06-20T02:05:01Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。