論文の概要: Semi-overcomplete convolutional auto-encoder embedding as shape priors for deep vessel segmentation
- arxiv url: http://arxiv.org/abs/2409.13001v1
- Date: Thu, 19 Sep 2024 15:59:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 12:25:44.083356
- Title: Semi-overcomplete convolutional auto-encoder embedding as shape priors for deep vessel segmentation
- Title(参考訳): 深部血管分割用半完全畳み込み型オートエンコーダ
- Authors: Amine Sadikine, Bogdan Badic, Jean-Pierre Tasu, Vincent Noblet, Dimitris Visvikis, Pierre-Henri Conze,
- Abstract要約: 本稿では,半完全畳み込み型自動エンコーダの組込みから,より深いセグメンテーション形状を取り入れた新しい手法を提案する。
標準的な畳み込みオートエンコーダ(CAE)と比較すると、小さな構造をより正確に特徴付けるために、高次元にデータを投影するオーバーコンプリートブランチを利用する。
DRIVEおよび3D-IRCADbデータセットを用いて網膜および肝血管抽出実験を行ったところ,従来のCAEの形状を考慮せずにトレーニングしたU-Netと比較して,本法の有効性が示された。
- 参考スコア(独自算出の注目度): 0.9150396362246221
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The extraction of blood vessels has recently experienced a widespread interest in medical image analysis. Automatic vessel segmentation is highly desirable to guide clinicians in computer-assisted diagnosis, therapy or surgical planning. Despite a good ability to extract large anatomical structures, the capacity of U-Net inspired architectures to automatically delineate vascular systems remains a major issue, especially given the scarcity of existing datasets. In this paper, we present a novel approach that integrates into deep segmentation shape priors from a Semi-Overcomplete Convolutional Auto-Encoder (S-OCAE) embedding. Compared to standard Convolutional Auto-Encoders (CAE), it exploits an over-complete branch that projects data onto higher dimensions to better characterize tiny structures. Experiments on retinal and liver vessel extraction, respectively performed on publicly-available DRIVE and 3D-IRCADb datasets, highlight the effectiveness of our method compared to U-Net trained without and with shape priors from a traditional CAE.
- Abstract(参考訳): 血管の抽出は、最近医療画像解析に広く関心を寄せている。
自動血管セグメンテーションは、コンピュータによる診断、治療、手術計画において臨床医を指導するのに非常に望ましい。
大規模な解剖学的構造を抽出する能力は優れているが、U-Netにインスパイアされたアーキテクチャーは、特に既存のデータセットが不足していることを考えると、血管系を自動的に記述する能力が大きな問題となっている。
本稿では,半完全畳み込み型自動エンコーダ(S-OCAE)の組込みから,より深いセグメンテーション形状を取り入れた新しい手法を提案する。
標準的な畳み込みオートエンコーダ(CAE)と比較すると、小さな構造をより正確に特徴付けるために、高次元にデータを投影するオーバーコンプリートブランチを利用する。
DRIVEおよび3D-IRCADbデータセットを用いて網膜および肝血管抽出実験を行ったところ,従来のCAEの形状を考慮せずにトレーニングしたU-Netと比較して,本法の有効性が示された。
関連論文リスト
- TransUNext: towards a more advanced U-shaped framework for automatic vessel segmentation in the fundus image [19.16680702780529]
本稿では,ハイブリッドトランスフォーマーとCNN: TransUNextのための,より高度なU字型アーキテクチャを提案する。
Global Multi-Scale Fusion (GMSF)モジュールはさらに、スキップ接続のアップグレード、高レベルセマンティクスと低レベル詳細情報の融合、高レベルセマンティクスと低レベルセマンティクスの相違を取り除くために導入された。
論文 参考訳(メタデータ) (2024-11-05T01:44:22Z) - Deep vessel segmentation with joint multi-prior encoding [2.8518403379315127]
単一潜在空間に形状とトポロジーを組み込んだ新しいジョイント先行符号化機構を提案する。
本手法の有効性を3D-IRCADbデータセットで実証した。
論文 参考訳(メタデータ) (2024-09-18T22:03:46Z) - Teaching AI the Anatomy Behind the Scan: Addressing Anatomical Flaws in Medical Image Segmentation with Learnable Prior [34.54360931760496]
臓器の数、形状、相対的な位置などの重要な解剖学的特徴は、堅牢な多臓器分割モデルの構築に不可欠である。
我々は Anatomy-Informed Network (AIC-Net) と呼ばれる新しいアーキテクチャを導入する。
AIC-Netは、患者固有の解剖学に適応できる「解剖学的事前」と呼ばれる学習可能な入力を組み込んでいる。
論文 参考訳(メタデータ) (2024-03-27T10:46:24Z) - An automated framework for brain vessel centerline extraction from CTA
images [28.173407996203153]
CTA画像から脳血管中心を抽出する自動フレームワークを提案する。
提案手法は,平均対称中心線距離 (ASCD) と重なり (OV) の観点から,最先端手法より優れている。
サブグループ分析では,脳卒中治療における臨床応用において,提案する枠組みが有望であることが示唆された。
論文 参考訳(メタデータ) (2024-01-13T11:01:00Z) - Leveraging Frequency Domain Learning in 3D Vessel Segmentation [50.54833091336862]
本研究では,Fourier領域学習を3次元階層分割モデルにおけるマルチスケール畳み込みカーネルの代用として活用する。
管状血管分割作業において,新しいネットワークは顕著なサイス性能(ASACA500が84.37%,ImageCASが80.32%)を示した。
論文 参考訳(メタデータ) (2024-01-11T19:07:58Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
本稿では,学習可能な重みに基づくハイブリッド医療画像セグメンテーション手法を提案する。
我々のアプローチはどんなハイブリッドモデルにも簡単に統合でき、外部のトレーニングデータを必要としない。
多臓器・肺がんセグメンテーションタスクの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-06-15T17:55:05Z) - MISSU: 3D Medical Image Segmentation via Self-distilling TransUNet [55.16833099336073]
医用画像セグメンテーションのためのトランスフォーマーベースUNetを提案する。
グローバルな意味情報と局所的な空間的詳細特徴を同時に学習する。
MISSUは従来の最先端手法よりも優れた性能を発揮する。
論文 参考訳(メタデータ) (2022-06-02T07:38:53Z) - Hepatic vessel segmentation based on 3Dswin-transformer with inductive
biased multi-head self-attention [46.46365941681487]
Indu BIased Multi-Head Attention Vessel Net という,堅牢なエンドツーエンドのコンテナセグメンテーションネットワークを提案する。
正確な肝血管のボクセルを見つけるために,パッチワイド埋め込みよりもボクセルワイド埋め込みを導入する。
一方,絶対位置埋め込みから帰納的バイアス付き相対的位置埋め込みを学習する帰納的バイアス付きマルチヘッド自己アテンションを提案する。
論文 参考訳(メタデータ) (2021-11-05T10:17:08Z) - Rethinking the Extraction and Interaction of Multi-Scale Features for
Vessel Segmentation [53.187152856583396]
網膜血管と主要動脈を2次元基底画像と3次元CTアンギオグラフィー(CTA)スキャンで分割する,PC-Netと呼ばれる新しいディープラーニングモデルを提案する。
PC-Netでは、ピラミッド圧縮励起(PSE)モジュールが各畳み込みブロックに空間情報を導入し、より効果的なマルチスケール特徴を抽出する能力を高めている。
論文 参考訳(メタデータ) (2020-10-09T08:22:54Z) - Multi-Task Neural Networks with Spatial Activation for Retinal Vessel
Segmentation and Artery/Vein Classification [49.64863177155927]
本稿では,網膜血管,動脈,静脈を同時に分割する空間活性化機構を備えたマルチタスクディープニューラルネットワークを提案する。
提案するネットワークは,容器分割における画素ワイド精度95.70%,A/V分類精度94.50%を実現している。
論文 参考訳(メタデータ) (2020-07-18T05:46:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。