論文の概要: Deep vessel segmentation with joint multi-prior encoding
- arxiv url: http://arxiv.org/abs/2409.12334v1
- Date: Wed, 18 Sep 2024 22:03:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 15:14:47.203768
- Title: Deep vessel segmentation with joint multi-prior encoding
- Title(参考訳): 関節型マルチプライアエンコーディングによる深部血管分割
- Authors: Amine Sadikine, Bogdan Badic, Enzo Ferrante, Vincent Noblet, Pascal Ballet, Dimitris Visvikis, Pierre-Henri Conze,
- Abstract要約: 単一潜在空間に形状とトポロジーを組み込んだ新しいジョイント先行符号化機構を提案する。
本手法の有効性を3D-IRCADbデータセットで実証した。
- 参考スコア(独自算出の注目度): 2.8518403379315127
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The precise delineation of blood vessels in medical images is critical for many clinical applications, including pathology detection and surgical planning. However, fully-automated vascular segmentation is challenging because of the variability in shape, size, and topology. Manual segmentation remains the gold standard but is time-consuming, subjective, and impractical for large-scale studies. Hence, there is a need for automatic and reliable segmentation methods that can accurately detect blood vessels from medical images. The integration of shape and topological priors into vessel segmentation models has been shown to improve segmentation accuracy by offering contextual information about the shape of the blood vessels and their spatial relationships within the vascular tree. To further improve anatomical consistency, we propose a new joint prior encoding mechanism which incorporates both shape and topology in a single latent space. The effectiveness of our method is demonstrated on the publicly available 3D-IRCADb dataset. More globally, the proposed approach holds promise in overcoming the challenges associated with automatic vessel delineation and has the potential to advance the field of deep priors encoding.
- Abstract(参考訳): 医療画像における血管の正確な明細化は、病理診断や手術計画など多くの臨床応用において重要である。
しかし, 形状, サイズ, トポロジーの多様性から, 完全自動血管分画は困難である。
手作業のセグメンテーションは依然として金本位であるが、大規模な研究には時間を要する、主観的で実用的ではない。
したがって、医療画像から血管を正確に検出できる自動的かつ信頼性の高いセグメンテーション法が必要である。
血管の形状と血管内の空間的関係に関する文脈情報を提供することにより, 血管分割モデルへの形状とトポロジカル前駆体の統合により, セグメンテーションの精度が向上することが示されている。
解剖学的整合性をさらに向上するため,1つの潜在空間に形状とトポロジーを組み込んだ新しいジョイント先行符号化機構を提案する。
本手法の有効性を3D-IRCADbデータセットで実証した。
よりグローバルに、提案手法は、自動船体デライン化に伴う課題を克服し、深層先行エンコーディングの分野を前進させる可能性を秘めている。
関連論文リスト
- Optimized Vessel Segmentation: A Structure-Agnostic Approach with Small Vessel Enhancement and Morphological Correction [7.882674026364302]
マルチモーダル血管セグメンテーションのための小型血管拡張と形態的補正を取り入れた構造診断手法を提案する。
本手法は,より優れたセグメンテーション精度,一般化,34.6%の接続性向上を実現し,臨床応用の可能性を強調した。
論文 参考訳(メタデータ) (2024-11-22T08:38:30Z) - Semi-overcomplete convolutional auto-encoder embedding as shape priors for deep vessel segmentation [0.9150396362246221]
本稿では,半完全畳み込み型自動エンコーダの組込みから,より深いセグメンテーション形状を取り入れた新しい手法を提案する。
標準的な畳み込みオートエンコーダ(CAE)と比較すると、小さな構造をより正確に特徴付けるために、高次元にデータを投影するオーバーコンプリートブランチを利用する。
DRIVEおよび3D-IRCADbデータセットを用いて網膜および肝血管抽出実験を行ったところ,従来のCAEの形状を考慮せずにトレーニングしたU-Netと比較して,本法の有効性が示された。
論文 参考訳(メタデータ) (2024-09-19T15:59:23Z) - Anatomy-guided Pathology Segmentation [56.883822515800205]
本研究では, 解剖学的特徴と病理学的情報を組み合わせた汎用的セグメンテーションモデルを構築し, 病理学的特徴のセグメンテーション精度を高めることを目的とする。
我々の解剖学・病理学交流(APEx)訓練では,ヒト解剖学の問合せ表現に結合特徴空間をデコードする問合せベースのセグメンテーション変換器を用いている。
これにより、FDG-PET-CTとChest X-Rayの病理分類タスクにおいて、強力なベースライン法に比べて最大3.3%のマージンで、ボード全体で最高の結果を報告できる。
論文 参考訳(メタデータ) (2024-07-08T11:44:15Z) - Deep Learning for Vascular Segmentation and Applications in Phase
Contrast Tomography Imaging [33.23991248643144]
本稿では,多様な臓器にまたがる機械学習技術の現状を概説する。
我々のゴールは、このトピックの基礎を提供し、新しい画像モダリティで血管セグメンテーションに適用するための堅牢なベースラインモデルを特定することである。
HiP CTは、1ボクセルあたり20mmという前例のない解像度で、完全な臓器の3Dイメージングを可能にする。
論文 参考訳(メタデータ) (2023-11-22T11:15:38Z) - Morphology Edge Attention Network and Optimal Geometric Matching
Connection model for vascular segmentation [3.6368619769561668]
本稿では,容器状構造物のセグメンテーションのための新しい形態的エッジアテンションネットワーク(MEA-Net)を提案する。
また、壊れた容器セグメントを接続するための最適幾何マッチング接続(OGMC)モデルを提案する。
本手法は,3次元血管分割作業の4つのデータセットにおける最先端手法と比較して,優れた,あるいは競争的な結果が得られる。
論文 参考訳(メタデータ) (2023-06-02T01:52:35Z) - External Attention Assisted Multi-Phase Splenic Vascular Injury
Segmentation with Limited Data [72.99534552950138]
脾臓は腹部外傷において最も多く損傷を受けた固形臓器の1つである。
脾臓血管損傷の 正確な分節化は 以下の理由から 困難です
論文 参考訳(メタデータ) (2022-01-04T02:35:56Z) - Real-time landmark detection for precise endoscopic submucosal
dissection via shape-aware relation network [51.44506007844284]
内視鏡下粘膜下郭清術における高精度かつリアルタイムなランドマーク検出のための形状認識型関係ネットワークを提案する。
まず,ランドマーク間の空間的関係に関する先行知識を直感的に表現する関係キーポイント・ヒートマップを自動生成するアルゴリズムを考案する。
次に、事前知識を学習プロセスに段階的に組み込むために、2つの補完的な正規化手法を開発する。
論文 参考訳(メタデータ) (2021-11-08T07:57:30Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Rethinking the Extraction and Interaction of Multi-Scale Features for
Vessel Segmentation [53.187152856583396]
網膜血管と主要動脈を2次元基底画像と3次元CTアンギオグラフィー(CTA)スキャンで分割する,PC-Netと呼ばれる新しいディープラーニングモデルを提案する。
PC-Netでは、ピラミッド圧縮励起(PSE)モジュールが各畳み込みブロックに空間情報を導入し、より効果的なマルチスケール特徴を抽出する能力を高めている。
論文 参考訳(メタデータ) (2020-10-09T08:22:54Z) - Assignment Flow for Order-Constrained OCT Segmentation [0.0]
網膜層厚の同定は、患者ごとに個別に行う重要な課題である。
自動セグメンテーションモデルの構築は,医用画像処理分野において重要な課題となっている。
我々は、秩序に制約された3D OCT網膜細胞層セグメンテーションのための新しい、純粋にデータ駆動型テキスト幾何学的アプローチを提案する。
論文 参考訳(メタデータ) (2020-09-10T01:57:53Z) - Context-Aware Refinement Network Incorporating Structural Connectivity
Prior for Brain Midline Delineation [50.868845400939314]
UNetによって生成された特徴ピラミッド表現を洗練・統合するための文脈対応改良ネットワーク(CAR-Net)を提案する。
正中線における脳の構造的接続性を維持するため、我々は新しい接続性レギュラーロスを導入する。
提案手法は, パラメータを少なくし, 4つの評価指標で3つの最先端手法より優れる。
論文 参考訳(メタデータ) (2020-07-10T14:01:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。