論文の概要: Data Poisoning and Leakage Analysis in Federated Learning
- arxiv url: http://arxiv.org/abs/2409.13004v1
- Date: Thu, 19 Sep 2024 16:50:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 12:25:44.076157
- Title: Data Poisoning and Leakage Analysis in Federated Learning
- Title(参考訳): フェデレーション学習におけるデータ中毒と漏洩分析
- Authors: Wenqi Wei, Tiansheng Huang, Zachary Yahn, Anoop Singhal, Margaret Loper, Ling Liu,
- Abstract要約: データ中毒と漏洩のリスクは、現実世界におけるフェデレートされた学習の大規模展開を妨げる。
この章では、データプライバシー侵害のエミュレーションとデータ中毒のエミュレーションという2つの支配的脅威を理解するための真実と落とし穴を明らかにします。
- 参考スコア(独自算出の注目度): 10.090442512374661
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data poisoning and leakage risks impede the massive deployment of federated learning in the real world. This chapter reveals the truths and pitfalls of understanding two dominating threats: {\em training data privacy intrusion} and {\em training data poisoning}. We first investigate training data privacy threat and present our observations on when and how training data may be leaked during the course of federated training. One promising defense strategy is to perturb the raw gradient update by adding some controlled randomized noise prior to sharing during each round of federated learning. We discuss the importance of determining the proper amount of randomized noise and the proper location to add such noise for effective mitigation of gradient leakage threats against training data privacy. Then we will review and compare different training data poisoning threats and analyze why and when such data poisoning induced model Trojan attacks may lead to detrimental damage on the performance of the global model. We will categorize and compare representative poisoning attacks and the effectiveness of their mitigation techniques, delivering an in-depth understanding of the negative impact of data poisoning. Finally, we demonstrate the potential of dynamic model perturbation in simultaneously ensuring privacy protection, poisoning resilience, and model performance. The chapter concludes with a discussion on additional risk factors in federated learning, including the negative impact of skewness, data and algorithmic biases, as well as misinformation in training data. Powered by empirical evidence, our analytical study offers some transformative insights into effective privacy protection and security assurance strategies in attack-resilient federated learning.
- Abstract(参考訳): データ中毒と漏洩のリスクは、現実世界におけるフェデレートされた学習の大規模展開を妨げる。
この章では、データプライバシ侵入のトレーニングとデータ中毒のトレーニングという、2つの支配的な脅威を理解するための真実と落とし穴を明らかにします。
まず、トレーニングデータプライバシの脅威を調査し、フェデレーショントレーニング中にトレーニングデータがどのように漏洩するかを観察する。
有望な防御戦略の1つは、連合学習の各ラウンドで共有する前に制御されたランダム化ノイズを追加することで、生の勾配更新を妨害することである。
本稿では、ランダム化ノイズの適切な量を決定することの重要性と、トレーニングデータプライバシに対する勾配漏洩脅威を効果的に軽減するために、そのようなノイズを付加する適切な位置について論じる。
次に、異なるトレーニングデータ中毒の脅威をレビューし比較し、なぜトロイの木馬攻撃が世界モデルの性能に有害な影響をもたらすのかを分析します。
代表的な毒殺攻撃とそれらの緩和技術の有効性を分類・比較し、データ中毒の負の影響を深く理解する。
最後に、プライバシ保護、中毒耐性、モデル性能を同時に確保する動的モデル摂動の可能性を示す。
この章は、偏見、データ、アルゴリズムバイアスの負の影響、およびトレーニングデータの誤情報を含む、連合学習における追加のリスク要因に関する議論で締めくくられている。
実証的な証拠によって、我々の分析研究は、攻撃耐性のある連邦学習における効果的なプライバシー保護とセキュリティ保証戦略に関する革新的な洞察を提供する。
関連論文リスト
- Defending against Data Poisoning Attacks in Federated Learning via User Elimination [0.0]
本稿では,フェデレーションモデルにおける敵ユーザの戦略的排除に焦点を当てた,新たなフレームワークを提案する。
我々は、ローカルトレーニングインスタンスが収集したメタデータと差分プライバシー技術を統合することにより、フェデレートアルゴリズムのアグリゲーションフェーズにおける異常を検出する。
提案手法の有効性を実証し,ユーザのプライバシとモデル性能を維持しながらデータ汚染のリスクを大幅に軽減する。
論文 参考訳(メタデータ) (2024-04-19T10:36:00Z) - Enabling Privacy-Preserving Cyber Threat Detection with Federated Learning [4.475514208635884]
本研究は, プライバシー保護型サイバー脅威検出のための学習の可能性について, 有効性, ビザンチンレジリエンス, 効率の観点から, 体系的に検証した。
FLトレーニングされた検出モデルは、中央訓練された検出モデルに匹敵する性能が得られることを示す。
現実的な脅威モデルの下では、FLはデータ中毒とモデル中毒の両方の攻撃に対して抵抗性があることが判明した。
論文 参考訳(メタデータ) (2024-04-08T01:16:56Z) - HINT: Healthy Influential-Noise based Training to Defend against Data
Poisoning Attacks [12.929357709840975]
本研究では,影響関数に基づくデータ中毒攻撃を効果的かつ堅牢に防ぐためのトレーニング手法を提案する。
影響関数を用いて、有害な攻撃に対する分類モデルを強化するのに役立つ健全なノイズを創出する。
実験の結果,HINTは非標的および標的の毒殺攻撃の効果に対して,ディープラーニングモデルを効果的に保護できることが示唆された。
論文 参考訳(メタデータ) (2023-09-15T17:12:19Z) - On Practical Aspects of Aggregation Defenses against Data Poisoning
Attacks [58.718697580177356]
悪意のあるトレーニングサンプルを持つディープラーニングモデルに対する攻撃は、データ中毒として知られている。
データ中毒に対する防衛戦略の最近の進歩は、認証された毒性の堅牢性を達成するためのアグリゲーション・スキームの有効性を強調している。
ここでは、Deep Partition Aggregation(ディープ・パーティション・アグリゲーション・アグリゲーション)、代表的アグリゲーション・ディフェンス(アグリゲーション・ディフェンス)に焦点を当て、効率、性能、堅牢性など、その実践的側面を評価する。
論文 参考訳(メタデータ) (2023-06-28T17:59:35Z) - Truth Serum: Poisoning Machine Learning Models to Reveal Their Secrets [53.866927712193416]
トレーニングデータセットを有害にすることができる敵が、このデータセットでトレーニングされたモデルに、他の当事者のプライベート詳細を漏洩させる可能性があることを示す。
私たちの攻撃は、メンバーシップ推論、属性推論、データ抽出に効果的です。
私たちの結果は、機械学習のためのマルチパーティプロトコルにおける暗号化プライバシ保証の関連性に疑問を投げかけました。
論文 参考訳(メタデータ) (2022-03-31T18:06:28Z) - Do Gradient Inversion Attacks Make Federated Learning Unsafe? [70.0231254112197]
フェデレートラーニング(FL)は、生データを共有することなく、AIモデルの協調トレーニングを可能にする。
モデル勾配からのディープニューラルネットワークの反転に関する最近の研究は、トレーニングデータの漏洩を防止するためのFLの安全性に関する懸念を提起した。
本研究では,本論文で提示されたこれらの攻撃が実際のFLユースケースでは実行不可能であることを示し,新たなベースライン攻撃を提供する。
論文 参考訳(メタデータ) (2022-02-14T18:33:12Z) - Accumulative Poisoning Attacks on Real-time Data [56.96241557830253]
我々は、よく設計されたが簡単な攻撃戦略が、中毒効果を劇的に増幅できることを示します。
我々の研究は、よく設計されたが簡単な攻撃戦略が、中毒効果を劇的に増幅できることを検証する。
論文 参考訳(メタデータ) (2021-06-18T08:29:53Z) - Influence Based Defense Against Data Poisoning Attacks in Online
Learning [9.414651358362391]
データ中毒は、攻撃者が少数のデータを操作して機械学習モデルのパフォーマンスを低下させる攻撃です。
オンライン環境における学習者のモデル上での有毒トレーニングデータによる劣化を最小限に抑える防衛機構を提案する。
論文 参考訳(メタデータ) (2021-04-24T08:39:13Z) - Curse or Redemption? How Data Heterogeneity Affects the Robustness of
Federated Learning [51.15273664903583]
データの不均一性は、フェデレートラーニングにおける重要な特徴の1つとして認識されているが、しばしば敵対的攻撃に対する堅牢性のレンズで見過ごされる。
本稿では, 複合学習におけるバックドア攻撃の影響を, 総合的な実験を通じて評価し, 理解することを目的とした。
論文 参考訳(メタデータ) (2021-02-01T06:06:21Z) - Property Inference From Poisoning [15.105224455937025]
プロパティ推論攻撃は、トレーニングされたモデルにアクセスでき、トレーニングデータのグローバルな統計を抽出しようとする敵を考える。
本研究では,モデルの情報漏洩を増大させることが目的とする中毒攻撃について検討する。
以上より,毒殺攻撃は情報漏洩を著しく促進し,敏感なアプリケーションにおいてより強力な脅威モデルと見なされるべきであることが示唆された。
論文 参考訳(メタデータ) (2021-01-26T20:35:28Z) - Dataset Security for Machine Learning: Data Poisoning, Backdoor Attacks,
and Defenses [150.64470864162556]
この作業は体系的に分類され、幅広いデータセット脆弱性とエクスプロイトを議論する。
様々な毒とバックドアの脅威モデルとそれらの関係を記述することに加えて,それらの統一分類法を展開する。
論文 参考訳(メタデータ) (2020-12-18T22:38:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。