論文の概要: Enabling Privacy-Preserving Cyber Threat Detection with Federated Learning
- arxiv url: http://arxiv.org/abs/2404.05130v1
- Date: Mon, 8 Apr 2024 01:16:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-09 15:43:25.332824
- Title: Enabling Privacy-Preserving Cyber Threat Detection with Federated Learning
- Title(参考訳): フェデレーション学習によるプライバシー保護型サイバー脅威検出の実現
- Authors: Yu Bi, Yekai Li, Xuan Feng, Xianghang Mi,
- Abstract要約: 本研究は, プライバシー保護型サイバー脅威検出のための学習の可能性について, 有効性, ビザンチンレジリエンス, 効率の観点から, 体系的に検証した。
FLトレーニングされた検出モデルは、中央訓練された検出モデルに匹敵する性能が得られることを示す。
現実的な脅威モデルの下では、FLはデータ中毒とモデル中毒の両方の攻撃に対して抵抗性があることが判明した。
- 参考スコア(独自算出の注目度): 4.475514208635884
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite achieving good performance and wide adoption, machine learning based security detection models (e.g., malware classifiers) are subject to concept drift and evasive evolution of attackers, which renders up-to-date threat data as a necessity. However, due to enforcement of various privacy protection regulations (e.g., GDPR), it is becoming increasingly challenging or even prohibitive for security vendors to collect individual-relevant and privacy-sensitive threat datasets, e.g., SMS spam/non-spam messages from mobile devices. To address such obstacles, this study systematically profiles the (in)feasibility of federated learning for privacy-preserving cyber threat detection in terms of effectiveness, byzantine resilience, and efficiency. This is made possible by the build-up of multiple threat datasets and threat detection models, and more importantly, the design of realistic and security-specific experiments. We evaluate FL on two representative threat detection tasks, namely SMS spam detection and Android malware detection. It shows that FL-trained detection models can achieve a performance that is comparable to centrally trained counterparts. Also, most non-IID data distributions have either minor or negligible impact on the model performance, while a label-based non-IID distribution of a high extent can incur non-negligible fluctuation and delay in FL training. Then, under a realistic threat model, FL turns out to be adversary-resistant to attacks of both data poisoning and model poisoning. Particularly, the attacking impact of a practical data poisoning attack is no more than 0.14\% loss in model accuracy. Regarding FL efficiency, a bootstrapping strategy turns out to be effective to mitigate the training delay as observed in label-based non-IID scenarios.
- Abstract(参考訳): 優れたパフォーマンスと広く採用されているにもかかわらず、機械学習ベースのセキュリティ検出モデル(例えば、マルウェア分類器)は、攻撃者の概念の漂流と回避的進化の対象となる。
しかし、さまざまなプライバシ保護規則(GDPRなど)の施行により、セキュリティベンダがモバイルデバイスからSMSスパムや非スパムメッセージなど、個人関連およびプライバシに敏感な脅威データセットを収集することは、ますます困難あるいは禁じられている。
このような障害に対処するために,プライバシを保護したサイバー脅威検出のためのフェデレーション学習の実現可能性について,有効性,ビザンチンレジリエンス,効率の観点から体系的に検討した。
これは、複数の脅威データセットと脅威検出モデルの構築によって実現され、さらに重要なのは、現実的およびセキュリティ固有の実験の設計である。
我々は、SMSスパム検出とAndroidマルウェア検出という2つの代表的な脅威検出タスクについてFLを評価する。
FLトレーニングされた検出モデルは、中央訓練された検出モデルに匹敵する性能が得られることを示す。
また、ほとんどの非IIDデータ分布は、モデルの性能に小さなまたは無視的な影響がある一方、ラベルベースの高レベルの非IID分布は、FLトレーニングにおいて非無視的な変動と遅延を引き起こす可能性がある。
そして、現実的な脅威モデルの下で、FLはデータ中毒とモデル中毒の両方の攻撃に対して敵対的であることが判明した。
特に、実用的なデータ中毒攻撃による攻撃効果は、モデル精度の0.14\%の損失に留まらない。
FL効率に関して、ラベルベースの非IIDシナリオで見られるように、ブートストラップ戦略はトレーニング遅延を軽減するのに効果的であることが判明した。
関連論文リスト
- Formal Logic-guided Robust Federated Learning against Poisoning Attacks [6.997975378492098]
Federated Learning (FL)は、集中型機械学習(ML)に関連するプライバシー問題に対して、有望な解決策を提供する。
FLは、敵クライアントがトレーニングデータやモデル更新を操作して全体的なモデルパフォーマンスを低下させる、毒殺攻撃など、さまざまなセキュリティ上の脅威に対して脆弱である。
本稿では,時系列タスクにおけるフェデレート学習における中毒攻撃の軽減を目的とした防御機構を提案する。
論文 参考訳(メタデータ) (2024-11-05T16:23:19Z) - Mitigating Malicious Attacks in Federated Learning via Confidence-aware Defense [3.685395311534351]
Federated Learning(FL)は、分散機械学習ダイアグラムで、複数のクライアントがプライベートなローカルデータを共有せずに、グローバルモデルを協調的にトレーニングすることができる。
FLシステムは、データ中毒やモデル中毒を通じて悪意のあるクライアントで起こっている攻撃に対して脆弱である。
既存の防御方法は通常、特定の種類の中毒を緩和することに焦点を当てており、しばしば目に見えないタイプの攻撃に対して効果がない。
論文 参考訳(メタデータ) (2024-08-05T20:27:45Z) - A GAN-Based Data Poisoning Attack Against Federated Learning Systems and Its Countermeasure [17.975736855580674]
本稿では,VagGANという新たなデータ中毒モデルを提案する。
VagueGANは、GAN(Generative Adversarial Network)の変異を利用して、一見正当であるがノイズの多い有毒なデータを生成することができる。
我々の攻撃方法は一般によりステルス性が高く、複雑性の低いFL性能の劣化に有効である。
論文 参考訳(メタデータ) (2024-05-19T04:23:40Z) - Precision Guided Approach to Mitigate Data Poisoning Attacks in Federated Learning [4.907460152017894]
フェデレートラーニング(Federated Learning, FL)は、参加者が共有機械学習モデルを集合的にトレーニングすることを可能にする、協調学習パラダイムである。
データ中毒攻撃に対する現在のFL防衛戦略は、正確性と堅牢性の間のトレードオフを含む。
本稿では、FLにおけるデータ中毒攻撃を効果的に対処するために、ゾーンベースの退避更新(ZBDU)機構を利用するFedZZを提案する。
論文 参考訳(メタデータ) (2024-04-05T14:37:49Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
フェデレート・ラーニング(Federated Learning, FL)は、毒素による攻撃を受けやすい。
FreqFedは、モデルの更新を周波数領域に変換する新しいアグリゲーションメカニズムである。
FreqFedは, 凝集モデルの有用性に悪影響を及ぼすことなく, 毒性攻撃を効果的に軽減できることを実証した。
論文 参考訳(メタデータ) (2023-12-07T16:56:24Z) - Data-Agnostic Model Poisoning against Federated Learning: A Graph
Autoencoder Approach [65.2993866461477]
本稿では,フェデレートラーニング(FL)に対するデータに依存しないモデル中毒攻撃を提案する。
この攻撃はFLトレーニングデータの知識を必要とせず、有効性と検出不能の両方を達成する。
実験により、FLの精度は提案した攻撃の下で徐々に低下し、既存の防御機構では検出できないことが示された。
論文 参考訳(メタデータ) (2023-11-30T12:19:10Z) - Safe and Robust Watermark Injection with a Single OoD Image [90.71804273115585]
高性能なディープニューラルネットワークをトレーニングするには、大量のデータと計算リソースが必要である。
安全で堅牢なバックドア型透かし注入法を提案する。
我々は,透かし注入時のモデルパラメータのランダムな摂動を誘導し,一般的な透かし除去攻撃に対する防御を行う。
論文 参考訳(メタデータ) (2023-09-04T19:58:35Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning(FL)は、分散機械学習モデルのトレーニング、データのプライバシの保護、通信コストの低減、多様化したデータソースによるモデルパフォーマンスの向上を支援する。
FLは、中毒攻撃、標的外のパフォーマンス劣化とターゲットのバックドア攻撃の両方でモデルの整合性を損なうような脆弱性に直面している。
我々は、複数の目的に同時に適応できる、強い適応的敵の概念を新たに定義する。
MESASは、実際のデータシナリオで有効であり、平均オーバーヘッドは24.37秒である。
論文 参考訳(メタデータ) (2023-06-06T11:44:42Z) - FedCC: Robust Federated Learning against Model Poisoning Attacks [0.0]
フェデレートラーニング(Federated Learning)は、学習モデルにおけるプライバシの問題に対処するように設計されている。
新しい分散パラダイムは、データのプライバシを保護するが、サーバがローカルデータセットにアクセスできないため、攻撃面を区別する。
論文 参考訳(メタデータ) (2022-12-05T01:52:32Z) - RelaxLoss: Defending Membership Inference Attacks without Losing Utility [68.48117818874155]
より達成可能な学習目標を持つ緩和された損失に基づく新しい学習フレームワークを提案する。
RelaxLossは、簡単な実装と無視可能なオーバーヘッドのメリットを加えた任意の分類モデルに適用できる。
当社のアプローチはMIAに対するレジリエンスの観点から,常に最先端の防御機構より優れています。
論文 参考訳(メタデータ) (2022-07-12T19:34:47Z) - How Robust are Randomized Smoothing based Defenses to Data Poisoning? [66.80663779176979]
我々は、トレーニングデータの品質の重要性を強調する堅牢な機械学習モデルに対して、これまで認識されていなかった脅威を提示します。
本稿では,二段階最適化に基づく新たなデータ中毒攻撃法を提案し,ロバストな分類器のロバスト性を保証する。
我々の攻撃は、被害者が最先端のロバストな訓練方法を用いて、ゼロからモデルを訓練しても効果的である。
論文 参考訳(メタデータ) (2020-12-02T15:30:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。