Data Poisoning and Leakage Analysis in Federated Learning
- URL: http://arxiv.org/abs/2409.13004v1
- Date: Thu, 19 Sep 2024 16:50:29 GMT
- Title: Data Poisoning and Leakage Analysis in Federated Learning
- Authors: Wenqi Wei, Tiansheng Huang, Zachary Yahn, Anoop Singhal, Margaret Loper, Ling Liu,
- Abstract summary: Data poisoning and leakage risks impede the massive deployment of federated learning in the real world.
This chapter reveals the truths and pitfalls of understanding two dominating threats: em training data privacy intrusion and em training data poisoning
- Score: 10.090442512374661
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data poisoning and leakage risks impede the massive deployment of federated learning in the real world. This chapter reveals the truths and pitfalls of understanding two dominating threats: {\em training data privacy intrusion} and {\em training data poisoning}. We first investigate training data privacy threat and present our observations on when and how training data may be leaked during the course of federated training. One promising defense strategy is to perturb the raw gradient update by adding some controlled randomized noise prior to sharing during each round of federated learning. We discuss the importance of determining the proper amount of randomized noise and the proper location to add such noise for effective mitigation of gradient leakage threats against training data privacy. Then we will review and compare different training data poisoning threats and analyze why and when such data poisoning induced model Trojan attacks may lead to detrimental damage on the performance of the global model. We will categorize and compare representative poisoning attacks and the effectiveness of their mitigation techniques, delivering an in-depth understanding of the negative impact of data poisoning. Finally, we demonstrate the potential of dynamic model perturbation in simultaneously ensuring privacy protection, poisoning resilience, and model performance. The chapter concludes with a discussion on additional risk factors in federated learning, including the negative impact of skewness, data and algorithmic biases, as well as misinformation in training data. Powered by empirical evidence, our analytical study offers some transformative insights into effective privacy protection and security assurance strategies in attack-resilient federated learning.
Related papers
- Defending against Data Poisoning Attacks in Federated Learning via User Elimination [0.0]
This paper introduces a novel framework focused on the strategic elimination of adversarial users within a federated model.
We detect anomalies in the aggregation phase of the Federated Algorithm, by integrating metadata gathered by the local training instances with Differential Privacy techniques.
Our experiments demonstrate the efficacy of our methods, significantly mitigating the risk of data poisoning while maintaining user privacy and model performance.
arXiv Detail & Related papers (2024-04-19T10:36:00Z) - Enabling Privacy-Preserving Cyber Threat Detection with Federated Learning [4.475514208635884]
This study systematically profiles the (in)feasibility of learning for privacy-preserving cyber threat detection in terms of effectiveness, byzantine resilience, and efficiency.
It shows that FL-trained detection models can achieve a performance that is comparable to centrally trained counterparts.
Under a realistic threat model, FL turns out to be adversary-resistant to attacks of both data poisoning and model poisoning.
arXiv Detail & Related papers (2024-04-08T01:16:56Z) - HINT: Healthy Influential-Noise based Training to Defend against Data
Poisoning Attacks [12.929357709840975]
We propose an efficient and robust training approach to defend against data poisoning attacks based on influence functions.
Using influence functions, we craft healthy noise that helps to harden the classification model against poisoning attacks.
Our empirical results show that HINT can efficiently protect deep learning models against the effect of both untargeted and targeted poisoning attacks.
arXiv Detail & Related papers (2023-09-15T17:12:19Z) - On Practical Aspects of Aggregation Defenses against Data Poisoning
Attacks [58.718697580177356]
Attacks on deep learning models with malicious training samples are known as data poisoning.
Recent advances in defense strategies against data poisoning have highlighted the effectiveness of aggregation schemes in achieving certified poisoning robustness.
Here we focus on Deep Partition Aggregation, a representative aggregation defense, and assess its practical aspects, including efficiency, performance, and robustness.
arXiv Detail & Related papers (2023-06-28T17:59:35Z) - Truth Serum: Poisoning Machine Learning Models to Reveal Their Secrets [53.866927712193416]
We show that an adversary who can poison a training dataset can cause models trained on this dataset to leak private details belonging to other parties.
Our attacks are effective across membership inference, attribute inference, and data extraction.
Our results cast doubts on the relevance of cryptographic privacy guarantees in multiparty protocols for machine learning.
arXiv Detail & Related papers (2022-03-31T18:06:28Z) - Do Gradient Inversion Attacks Make Federated Learning Unsafe? [70.0231254112197]
Federated learning (FL) allows the collaborative training of AI models without needing to share raw data.
Recent works on the inversion of deep neural networks from model gradients raised concerns about the security of FL in preventing the leakage of training data.
In this work, we show that these attacks presented in the literature are impractical in real FL use-cases and provide a new baseline attack.
arXiv Detail & Related papers (2022-02-14T18:33:12Z) - Accumulative Poisoning Attacks on Real-time Data [56.96241557830253]
We show that a well-designed but straightforward attacking strategy can dramatically amplify the poisoning effects.
Our work validates that a well-designed but straightforward attacking strategy can dramatically amplify the poisoning effects.
arXiv Detail & Related papers (2021-06-18T08:29:53Z) - Influence Based Defense Against Data Poisoning Attacks in Online
Learning [9.414651358362391]
Data poisoning is an attack where an attacker manipulates a fraction of data to degrade the performance of machine learning model.
We propose a defense mechanism to minimize the degradation caused by the poisoned training data on a learner's model in an online setup.
arXiv Detail & Related papers (2021-04-24T08:39:13Z) - Curse or Redemption? How Data Heterogeneity Affects the Robustness of
Federated Learning [51.15273664903583]
Data heterogeneity has been identified as one of the key features in federated learning but often overlooked in the lens of robustness to adversarial attacks.
This paper focuses on characterizing and understanding its impact on backdooring attacks in federated learning through comprehensive experiments using synthetic and the LEAF benchmarks.
arXiv Detail & Related papers (2021-02-01T06:06:21Z) - Property Inference From Poisoning [15.105224455937025]
Property inference attacks consider an adversary who has access to the trained model and tries to extract some global statistics of the training data.
We study poisoning attacks where the goal of the adversary is to increase the information leakage of the model.
Our findings suggest that poisoning attacks can boost the information leakage significantly and should be considered as a stronger threat model in sensitive applications.
arXiv Detail & Related papers (2021-01-26T20:35:28Z) - Dataset Security for Machine Learning: Data Poisoning, Backdoor Attacks,
and Defenses [150.64470864162556]
This work systematically categorizes and discusses a wide range of dataset vulnerabilities and exploits.
In addition to describing various poisoning and backdoor threat models and the relationships among them, we develop their unified taxonomy.
arXiv Detail & Related papers (2020-12-18T22:38:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.