Hardware-efficient quantum error correction using concatenated bosonic qubits
- URL: http://arxiv.org/abs/2409.13025v1
- Date: Thu, 19 Sep 2024 18:00:53 GMT
- Title: Hardware-efficient quantum error correction using concatenated bosonic qubits
- Authors: Harald Putterman, Kyungjoo Noh, Connor T. Hann, Gregory S. MacCabe, Shahriar Aghaeimeibodi, Rishi N. Patel, Menyoung Lee, William M. Jones, Hesam Moradinejad, Roberto Rodriguez, Neha Mahuli, Jefferson Rose, John Clai Owens, Harry Levine, Emma Rosenfeld, Philip Reinhold, Lorenzo Moncelsi, Joshua Ari Alcid, Nasser Alidoust, Patricio Arrangoiz-Arriola, James Barnett, Przemyslaw Bienias, Hugh A. Carson, Cliff Chen, Li Chen, Harutiun Chinkezian, Eric M. Chisholm, Ming-Han Chou, Aashish Clerk, Andrew Clifford, R. Cosmic, Ana Valdes Curiel, Erik Davis, Laura DeLorenzo, J. Mitchell D'Ewart, Art Diky, Nathan D'Souza, Philipp T. Dumitrescu, Shmuel Eisenmann, Essam Elkhouly, Glen Evenbly, Michael T. Fang, Yawen Fang, Matthew J. Fling, Warren Fon, Gabriel Garcia, Alexey V. Gorshkov, Julia A. Grant, Mason J. Gray, Sebastian Grimberg, Arne L. Grimsmo, Arbel Haim, Justin Hand, Yuan He, Mike Hernandez, David Hover, Jimmy S. C. Hung, Matthew Hunt, Joe Iverson, Ignace Jarrige, Jean-Christophe Jaskula, Liang Jiang, Mahmoud Kalaee, Rassul Karabalin, Peter J. Karalekas, Andrew J. Keller, Amirhossein Khalajhedayati, Aleksander Kubica, Hanho Lee, Catherine Leroux, Simon Lieu, Victor Ly, Keven Villegas Madrigal, Guillaume Marcaud, Gavin McCabe, Cody Miles, Ashley Milsted, Joaquin Minguzzi, Anurag Mishra, Biswaroop Mukherjee, Mahdi Naghiloo, Eric Oblepias, Gerson Ortuno, Jason Pagdilao, Nicola Pancotti, Ashley Panduro, JP Paquette, Minje Park, Gregory A. Peairs, David Perello, Eric C. Peterson, Sophia Ponte, John Preskill, Johnson Qiao, Gil Refael, Rachel Resnick, Alex Retzker, Omar A. Reyna, Marc Runyan, Colm A. Ryan, Abdulrahman Sahmoud, Ernesto Sanchez, Rohan Sanil, Krishanu Sankar, Yuki Sato, Thomas Scaffidi, Salome Siavoshi, Prasahnt Sivarajah, Trenton Skogland, Chun-Ju Su, Loren J. Swenson, Stephanie M. Teo, Astrid Tomada, Giacomo Torlai, E. Alex Wollack, Yufeng Ye, Jessica A. Zerrudo, Kailing Zhang, Fernando G. S. L. Brandão, Matthew H. Matheny, Oskar Painter,
- Abstract summary: Quantum computers will need to incorporate quantum error correction, where a logical qubit is redundantly encoded in many noisy physical qubits.
Here, using a microfabricated superconducting quantum circuit, we realize a logical qubit memory formed from the concatenation of encoded bosonic cat qubits.
We study the performance and scaling of the logical qubit memory, finding that the phase-flip correcting repetition code operates below threshold.
- Score: 41.6475446744259
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In order to solve problems of practical importance, quantum computers will likely need to incorporate quantum error correction, where a logical qubit is redundantly encoded in many noisy physical qubits. The large physical-qubit overhead typically associated with error correction motivates the search for more hardware-efficient approaches. Here, using a microfabricated superconducting quantum circuit, we realize a logical qubit memory formed from the concatenation of encoded bosonic cat qubits with an outer repetition code of distance $d=5$. The bosonic cat qubits are passively protected against bit flips using a stabilizing circuit. Cat-qubit phase-flip errors are corrected by the repetition code which uses ancilla transmons for syndrome measurement. We realize a noise-biased CX gate which ensures bit-flip error suppression is maintained during error correction. We study the performance and scaling of the logical qubit memory, finding that the phase-flip correcting repetition code operates below threshold, with logical phase-flip error decreasing with code distance from $d=3$ to $d=5$. Concurrently, the logical bit-flip error is suppressed with increasing cat-qubit mean photon number. The minimum measured logical error per cycle is on average $1.75(2)\%$ for the distance-3 code sections, and $1.65(3)\%$ for the longer distance-5 code, demonstrating the effectiveness of bit-flip error suppression throughout the error correction cycle. These results, where the intrinsic error suppression of the bosonic encodings allows us to use a hardware-efficient outer error correcting code, indicate that concatenated bosonic codes are a compelling paradigm for reaching fault-tolerant quantum computation.
Related papers
- Quantum error correction below the surface code threshold [107.92016014248976]
Quantum error correction provides a path to reach practical quantum computing by combining multiple physical qubits into a logical qubit.
We present two surface code memories operating below a critical threshold: a distance-7 code and a distance-5 code integrated with a real-time decoder.
Our results present device performance that, if scaled, could realize the operational requirements of large scale fault-tolerant quantum algorithms.
arXiv Detail & Related papers (2024-08-24T23:08:50Z) - Fault-tolerant hyperbolic Floquet quantum error correcting codes [0.0]
We introduce a family of dynamically generated quantum error correcting codes that we call "hyperbolic Floquet codes"
One of our hyperbolic Floquet codes uses 400 physical qubits to encode 52 logical qubits with a code distance of 8, i.e., it is a $[[400,52,8]]$ code.
At small error rates, comparable logical error suppression to this code requires 5x as many physical qubits (1924) when using the honeycomb Floquet code with the same noise model and decoder.
arXiv Detail & Related papers (2023-09-18T18:00:02Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Quantum error correction with dissipatively stabilized squeezed cat
qubits [68.8204255655161]
We propose and analyze the error correction performance of a dissipatively stabilized squeezed cat qubit.
We find that for moderate squeezing the bit-flip error rate gets significantly reduced in comparison with the ordinary cat qubit while leaving the phase flip rate unchanged.
arXiv Detail & Related papers (2022-10-24T16:02:20Z) - Suppressing quantum errors by scaling a surface code logical qubit [147.2624260358795]
We report the measurement of logical qubit performance scaling across multiple code sizes.
Our system of superconducting qubits has sufficient performance to overcome the additional errors from increasing qubit number.
Results mark the first experimental demonstration where quantum error correction begins to improve performance with increasing qubit number.
arXiv Detail & Related papers (2022-07-13T18:00:02Z) - Realizing Repeated Quantum Error Correction in a Distance-Three Surface
Code [42.394110572265376]
We demonstrate quantum error correction using the surface code, which is known for its exceptionally high tolerance to errors.
In an error correction cycle taking only $1.1,mu$s, we demonstrate the preservation of four cardinal states of the logical qubit.
arXiv Detail & Related papers (2021-12-07T13:58:44Z) - Exponential suppression of bit or phase flip errors with repetitive
error correction [56.362599585843085]
State-of-the-art quantum platforms typically have physical error rates near $10-3$.
Quantum error correction (QEC) promises to bridge this divide by distributing quantum logical information across many physical qubits.
We implement 1D repetition codes embedded in a 2D grid of superconducting qubits which demonstrate exponential suppression of bit or phase-flip errors.
arXiv Detail & Related papers (2021-02-11T17:11:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.