LLM Surgery: Efficient Knowledge Unlearning and Editing in Large Language Models
- URL: http://arxiv.org/abs/2409.13054v1
- Date: Thu, 19 Sep 2024 19:07:01 GMT
- Title: LLM Surgery: Efficient Knowledge Unlearning and Editing in Large Language Models
- Authors: Akshaj Kumar Veldanda, Shi-Xiong Zhang, Anirban Das, Supriyo Chakraborty, Stephen Rawls, Sambit Sahu, Milind Naphade,
- Abstract summary: Large language models (LLMs) have revolutionized various domains, yet their utility comes with challenges related to outdated or problematic knowledge embedded during pretraining.
This paper addresses the challenge of modifying LLMs to unlearn problematic and outdated information while efficiently integrating new knowledge without retraining from scratch.
Using Llama2-7B, we demonstrate that LLM Surgery can achieve significant forgetting on the unlearn set, a 20% increase in accuracy on the update set, and maintain performance on the retain set.
- Score: 16.67999382790238
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Large language models (LLMs) have revolutionized various domains, yet their utility comes with significant challenges related to outdated or problematic knowledge embedded during pretraining. This paper addresses the challenge of modifying LLMs to unlearn problematic and outdated information while efficiently integrating new knowledge without retraining from scratch. Here, we propose LLM Surgery, a framework to efficiently modify LLM behaviour by optimizing a three component objective function that: (1) Performs reverse gradient on unlearning dataset (problematic and outdated information), (2) Performs gradient descent on the update dataset (new and updated information), and (3) Minimizes the KL divergence on the retain dataset (small subset of unchanged text), ensuring alignment between pretrained and modified model outputs. Due to the lack of publicly available datasets specifically tailored for our novel task, we compiled a new dataset and an evaluation benchmark. Using Llama2-7B, we demonstrate that LLM Surgery can achieve significant forgetting on the unlearn set, a 20\% increase in accuracy on the update set, and maintain performance on the retain set.
Related papers
- Learning to Reduce: Towards Improving Performance of Large Language Models on Structured Data [39.29778853025738]
Large Language Models (LLMs) have been achieving competent performance on a wide range of downstream tasks.
This paper proposes a framework, Learning to Reduce, that fine-tunes a language model with On-Policy Learning to generate a reduced version of an input structured data.
arXiv Detail & Related papers (2024-07-03T01:51:50Z) - LLM2LLM: Boosting LLMs with Novel Iterative Data Enhancement [79.31084387589968]
Pretrained large language models (LLMs) are currently state-of-the-art for solving the vast majority of natural language processing tasks.
We propose LLM2LLM, a data augmentation strategy that uses a teacher LLM to enhance a small seed dataset.
We achieve improvements up to 24.2% on the GSM8K dataset, 32.6% on CaseHOLD, 32.0% on SNIPS, 52.6% on TREC and 39.8% on SST-2 over regular fine-tuning in the low-data regime.
arXiv Detail & Related papers (2024-03-22T08:57:07Z) - Can Active Label Correction Improve LLM-based Modular AI Systems? [0.8057006406834466]
We study the noise in three GPT-3.5-annotated datasets and their denoising with human feedback.
We propose a novel method ALC3 that iteratively applies three updates to the training dataset.
arXiv Detail & Related papers (2024-01-10T14:41:37Z) - Curated LLM: Synergy of LLMs and Data Curation for tabular augmentation in low-data regimes [57.62036621319563]
We introduce CLLM, which leverages the prior knowledge of Large Language Models (LLMs) for data augmentation in the low-data regime.
We demonstrate the superior performance of CLLM in the low-data regime compared to conventional generators.
arXiv Detail & Related papers (2023-12-19T12:34:46Z) - Unlearn What You Want to Forget: Efficient Unlearning for LLMs [92.51670143929056]
Large language models (LLMs) have achieved significant progress from pre-training on and memorizing a wide range of textual data.
This process might suffer from privacy issues and violations of data protection regulations.
We propose an efficient unlearning framework that could efficiently update LLMs without having to retrain the whole model after data removals.
arXiv Detail & Related papers (2023-10-31T03:35:59Z) - Reflection-Tuning: Data Recycling Improves LLM Instruction-Tuning [79.32236399694077]
Low-quality data in the training set are usually detrimental to instruction tuning.
We propose a novel method, termed "reflection-tuning"
This approach utilizes an oracle LLM to recycle the original training data by introspecting and enhancing the quality of instructions and responses in the data.
arXiv Detail & Related papers (2023-10-18T05:13:47Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
Aligned large language models (LLMs) demonstrate exceptional capabilities in task-solving, following instructions, and ensuring safety.
Existing continual learning benchmarks lack sufficient challenge for leading aligned LLMs.
We introduce TRACE, a novel benchmark designed to evaluate continual learning in LLMs.
arXiv Detail & Related papers (2023-10-10T16:38:49Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation.
We tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset.
Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures.
arXiv Detail & Related papers (2023-05-19T12:10:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.