Learning to Compare Hardware Designs for High-Level Synthesis
- URL: http://arxiv.org/abs/2409.13138v1
- Date: Fri, 20 Sep 2024 00:47:29 GMT
- Title: Learning to Compare Hardware Designs for High-Level Synthesis
- Authors: Yunsheng Bai, Atefeh Sohrabizadeh, Zijian Ding, Rongjian Liang, Weikai Li, Ding Wang, Haoxing Ren, Yizhou Sun, Jason Cong,
- Abstract summary: High-level synthesis (HLS) is an automated design process that transforms high-level code into hardware designs.
HLS relies on pragmas, which are directives inserted into the source code to guide the synthesis process.
We propose compareXplore, a novel approach that learns to compare hardware designs for effective HLS optimization.
- Score: 44.408523725466374
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High-level synthesis (HLS) is an automated design process that transforms high-level code into hardware designs, enabling the rapid development of hardware accelerators. HLS relies on pragmas, which are directives inserted into the source code to guide the synthesis process, and pragmas have various settings and values that significantly impact the resulting hardware design. State-of-the-art ML-based HLS methods, such as HARP, first train a deep learning model, typically based on graph neural networks (GNNs) applied to graph-based representations of the source code and pragmas. They then perform design space exploration (DSE) to explore the pragma design space, rank candidate designs using the model, and return the top designs. However, traditional DSE methods face challenges due to the highly nonlinear relationship between pragma settings and performance metrics, along with complex interactions between pragmas that affect performance in non-obvious ways. To address these challenges, we propose compareXplore, a novel approach that learns to compare hardware designs for effective HLS optimization. CompareXplore introduces a hybrid loss function that combines pairwise preference learning with pointwise performance prediction, enabling the model to capture both relative preferences and absolute performance. Moreover, we introduce a novel node difference attention module that focuses on the most informative differences between designs, enabling the model to identify critical pragmas impacting performance. CompareXplore adopts a two-stage DSE, where a pointwise prediction model is used for the initial design pruning, followed by a pairwise comparison stage for precise performance verification. In extensive experiments, compareXplore achieves significant improvements in ranking metrics and generates high-quality HLS results for the selected designs, outperforming the existing SOTA method.
Related papers
- Scalable Language Models with Posterior Inference of Latent Thought Vectors [52.63299874322121]
Latent-Thought Language Models (LTMs) incorporate explicit latent thought vectors that follow an explicit prior model in latent space.
LTMs possess additional scaling dimensions beyond traditional LLMs, yielding a structured design space.
LTMs significantly outperform conventional autoregressive models and discrete diffusion models in validation perplexity and zero-shot language modeling.
arXiv Detail & Related papers (2025-02-03T17:50:34Z) - AIRCHITECT v2: Learning the Hardware Accelerator Design Space through Unified Representations [3.6231171463908938]
Design space exploration plays a crucial role in enabling custom hardware architectures.
Recently, AIrchitect v1, the first attempt to address the limitations of DSE into a search-time classification problem.
arXiv Detail & Related papers (2025-01-17T04:57:42Z) - PearSAN: A Machine Learning Method for Inverse Design using Pearson Correlated Surrogate Annealing [66.27103948750306]
PearSAN is a machine learning-assisted optimization algorithm applicable to inverse design problems with large design spaces.
It uses a Pearson correlated surrogate model to predict the figure of merit of the true design metric.
It achieves a state-of-the-art maximum design efficiency of 97%, and is at least an order of magnitude faster than previous methods.
arXiv Detail & Related papers (2024-12-26T17:02:19Z) - Optimizing Sequential Recommendation Models with Scaling Laws and Approximate Entropy [104.48511402784763]
Performance Law for SR models aims to theoretically investigate and model the relationship between model performance and data quality.
We propose Approximate Entropy (ApEn) to assess data quality, presenting a more nuanced approach compared to traditional data quantity metrics.
arXiv Detail & Related papers (2024-11-30T10:56:30Z) - Cross-Modality Program Representation Learning for Electronic Design Automation with High-Level Synthesis [45.471039079664656]
Domain-specific accelerators (DSAs) have gained popularity for applications such as deep learning and autonomous driving.
We propose ProgSG, a model that allows interaction between the source code sequence modality and the graph modality in a deep and fine-grained way.
We show that ProgSG reduces the RMSE of design performance predictions by up to $22%$, and identifies designs with an average of $1.10times$.
arXiv Detail & Related papers (2024-06-13T22:34:58Z) - The Languini Kitchen: Enabling Language Modelling Research at Different
Scales of Compute [66.84421705029624]
We introduce an experimental protocol that enables model comparisons based on equivalent compute, measured in accelerator hours.
We pre-process an existing large, diverse, and high-quality dataset of books that surpasses existing academic benchmarks in quality, diversity, and document length.
This work also provides two baseline models: a feed-forward model derived from the GPT-2 architecture and a recurrent model in the form of a novel LSTM with ten-fold throughput.
arXiv Detail & Related papers (2023-09-20T10:31:17Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - Hybrid Graph Models for Logic Optimization via Spatio-Temporal
Information [15.850413267830522]
Two major concerns that may impede production-ready ML applications in EDA are accuracy requirements and generalization capability.
We propose hybrid graph neural network (GNN) based approaches towards highly accurate quality-of-result (QoR) estimations.
Evaluation on 3.3 million data points shows that the testing mean absolute percentage error (MAPE) on designs seen unseen during training are no more than 1.2% and 3.1%.
arXiv Detail & Related papers (2022-01-20T21:12:22Z) - A Graph Deep Learning Framework for High-Level Synthesis Design Space
Exploration [11.154086943903696]
High-Level Synthesis is a solution for fast prototyping application-specific hardware.
We propose HLS, for the first time in the literature, graph neural networks that jointly predict acceleration performance and hardware costs.
We show that our approach achieves prediction accuracy comparable with that of commonly used simulators.
arXiv Detail & Related papers (2021-11-29T18:17:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.