論文の概要: Deep Learning based Optical Image Super-Resolution via Generative Diffusion Models for Layerwise in-situ LPBF Monitoring
- arxiv url: http://arxiv.org/abs/2409.13171v1
- Date: Fri, 20 Sep 2024 02:59:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 11:41:13.307083
- Title: Deep Learning based Optical Image Super-Resolution via Generative Diffusion Models for Layerwise in-situ LPBF Monitoring
- Title(参考訳): 層内LPBFモニタリングのための生成拡散モデルによる深層学習に基づく光学画像の超解像
- Authors: Francis Ogoke, Sumesh Kalambettu Suresh, Jesse Adamczyk, Dan Bolintineanu, Anthony Garland, Michael Heiden, Amir Barati Farimani,
- Abstract要約: 我々は,ビルドプレートの低解像度画像とビルドプレートの詳細な高解像度光学画像とを関連付けるために,生成的深層学習モデルを実装した。
低解像度Webカメラ画像からビルドプレートの現実的な高解像度画像を生成するために,条件付き潜在確率拡散モデルを訓練した。
また, 印刷部の3次元形状を再現し, 復元した試料の表面粗さを解析する枠組みを設計した。
- 参考スコア(独自算出の注目度): 4.667646675144656
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The stochastic formation of defects during Laser Powder Bed Fusion (L-PBF) negatively impacts its adoption for high-precision use cases. Optical monitoring techniques can be used to identify defects based on layer-wise imaging, but these methods are difficult to scale to high resolutions due to cost and memory constraints. Therefore, we implement generative deep learning models to link low-cost, low-resolution images of the build plate to detailed high-resolution optical images of the build plate, enabling cost-efficient process monitoring. To do so, a conditional latent probabilistic diffusion model is trained to produce realistic high-resolution images of the build plate from low-resolution webcam images, recovering the distribution of small-scale features and surface roughness. We first evaluate the performance of the model by analyzing the reconstruction quality of the generated images using peak-signal-to-noise-ratio (PSNR), structural similarity index measure (SSIM) and wavelet covariance metrics that describe the preservation of high-frequency information. Additionally, we design a framework based upon the Segment Anything foundation model to recreate the 3D morphology of the printed part and analyze the surface roughness of the reconstructed samples. Finally, we explore the zero-shot generalization capabilities of the implemented framework to other part geometries by creating synthetic low-resolution data.
- Abstract(参考訳): レーザー粉体層融合(L-PBF)における欠陥の確率的形成は, 高精度使用例への採用に悪影響を及ぼす。
光モニタリング技術は,レイヤワイドイメージングに基づく欠陥の同定に利用することができるが,コストやメモリの制約により,高解像度化が困難である。
そこで我々は,低コストで低解像度なビルドプレート画像と詳細な高解像度なビルドプレート画像とを結びつけ,コスト効率のよいプロセス監視を実現するため,生成型ディープラーニングモデルを実装した。
そのため,低分解能Webカメラ画像からビルドプレートの現実的な高分解能画像を生成するための条件付き潜伏確率拡散モデルを訓練し,小型の特徴の分布と表面粗さを復元する。
まず、ピーク信号対雑音比(PSNR)、構造類似度指標(SSIM)、ウェーブレット共分散測定を用いて、生成した画像の再構成品質を解析し、そのモデルの性能を評価する。
さらに,Segment Anything Foundationモデルに基づくフレームワークを設計し,プリント部の3次元形状を再現し,再構成した試料の表面粗さを解析する。
最後に、実装されたフレームワークのゼロショット一般化能力を、合成低解像度データを作成することによって、他の部分のジオメトリに拡張する。
関連論文リスト
- MSDiff: Multi-Scale Diffusion Model for Ultra-Sparse View CT Reconstruction [5.5805994093893885]
マルチスケールディフ融合モデル(MSDiff)を用いた超スパースCT再構成法を提案する。
提案モデルは,包括的サンプリングと選択的スパースサンプリング技術の両方からの情報を統合する。
プロジェクションデータ内の固有相関を利用して、同値マスクを設計し、モデルがより効果的に注意を集中できるようにする。
論文 参考訳(メタデータ) (2024-05-09T14:52:32Z) - Latent Diffusion Prior Enhanced Deep Unfolding for Snapshot Spectral Compressive Imaging [17.511583657111792]
スナップショット分光画像再構成は、単発2次元圧縮計測から3次元空間スペクトル像を再構成することを目的としている。
我々は, 深部展開法に先立って劣化のないモデルを生成するため, 遅延拡散モデル(LDM)という生成モデルを導入する。
論文 参考訳(メタデータ) (2023-11-24T04:55:20Z) - ACDMSR: Accelerated Conditional Diffusion Models for Single Image
Super-Resolution [84.73658185158222]
本稿では,ACDMSRと呼ばれる拡散モデルに基づく超解像法を提案する。
提案手法は, 決定論的反復分解過程を通じて超解像を行うために, 標準拡散モデルに適応する。
提案手法は,低解像度画像に対してより視覚的に現実的な表現を生成し,現実的なシナリオにおけるその有効性を強調した。
論文 参考訳(メタデータ) (2023-07-03T06:49:04Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
拡散モデル (DM) は画像劣化に導入され, 有望な性能を示した。
本稿では,階層型統合拡散モデル(HI-Diff)を提案する。
人工的および実世界のぼかしデータセットの実験は、HI-Diffが最先端の手法より優れていることを示した。
論文 参考訳(メタデータ) (2023-05-22T12:18:20Z) - Single-View Height Estimation with Conditional Diffusion Probabilistic
Models [1.8782750537161614]
我々は、マルコフ連鎖として光学画像とDSM画像の連成分布を学習するために、生成拡散モデルを訓練する。
これは、音源画像に条件付けされたままの復調スコアマッチング目標を最小化して、現実的な高解像度3次元表面を生成する。
本稿では,1枚のリモートセンシング画像から高度推定を行う条件付き拡散確率モデル(DDPM)を実験する。
論文 参考訳(メタデータ) (2023-04-26T00:37:05Z) - Pixelated Reconstruction of Foreground Density and Background Surface
Brightness in Gravitational Lensing Systems using Recurrent Inference
Machines [116.33694183176617]
我々は、リカレント推論マシンに基づくニューラルネットワークを用いて、背景画像の歪みのない画像と、画素マップとしてのレンズ質量密度分布を再構成する。
従来のパラメトリックモデルと比較して、提案手法はより表現力が高く、複雑な質量分布を再構成することができる。
論文 参考訳(メタデータ) (2023-01-10T19:00:12Z) - Exploiting Digital Surface Models for Inferring Super-Resolution for
Remotely Sensed Images [2.3204178451683264]
本稿では,SRRモデルにリアルなリモートセンシング画像の出力を強制する新しい手法を提案する。
画像の通常のデジタル表面モデル(nDSM)から推定されるピクセルレベルの情報を知覚的損失として特徴空間の類似性に頼る代わりに、モデルが考慮する。
視覚検査に基づいて、推定された超解像画像は、特に優れた品質を示す。
論文 参考訳(メタデータ) (2022-05-09T06:02:50Z) - Uncovering the Over-smoothing Challenge in Image Super-Resolution: Entropy-based Quantification and Contrastive Optimization [67.99082021804145]
我々はDetail Enhanced Contrastive Loss (DECLoss)と呼ばれるCOO問題に対する明確な解決策を提案する。
DECLossはコントラスト学習のクラスタリング特性を利用して、潜在的な高分解能分布の分散を直接的に低減する。
我々は複数の超高解像度ベンチマーク上でDECLosを評価し,PSNR指向モデルの知覚品質を向上させることを実証した。
論文 参考訳(メタデータ) (2022-01-04T08:30:09Z) - Frequency-Aware Physics-Inspired Degradation Model for Real-World Image
Super-Resolution [18.328806055594576]
両光およびセンサ劣化を考慮した実世界の物理インスパイアされた劣化モデルについて定式化する。
我々は、畳み込みニューラルネットワーク(CNN)を用いて、現実世界の劣化過程の遮断周波数を学習することを提案する。
異なる撮像システムで撮像した実世界の画像に対して,提案した劣化モデルの有効性と一般化能力を評価する。
論文 参考訳(メタデータ) (2021-11-05T07:30:00Z) - Hierarchical Amortized Training for Memory-efficient High Resolution 3D
GAN [52.851990439671475]
本稿では,高解像度な3D画像を生成することができる新しいエンドツーエンドGANアーキテクチャを提案する。
トレーニングと推論の異なる構成を使用することで、この目標を達成する。
3次元胸郭CTと脳MRIの実験により、我々のアプローチは画像生成における最先端技術より優れていることが示された。
論文 参考訳(メタデータ) (2020-08-05T02:33:04Z) - Invertible Image Rescaling [118.2653765756915]
Invertible Rescaling Net (IRN) を開発した。
我々は、ダウンスケーリングプロセスにおいて、指定された分布に従う潜在変数を用いて、失われた情報の分布をキャプチャする。
論文 参考訳(メタデータ) (2020-05-12T09:55:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。