論文の概要: MFSR: Multi-fractal Feature for Super-resolution Reconstruction with Fine Details Recovery
- arxiv url: http://arxiv.org/abs/2502.19797v1
- Date: Thu, 27 Feb 2025 06:12:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-28 14:57:38.815206
- Title: MFSR: Multi-fractal Feature for Super-resolution Reconstruction with Fine Details Recovery
- Title(参考訳): MFSR:細部回復を伴う超分解能再構成のためのマルチフラクタル特性
- Authors: Lianping Yang, Peng Jiao, Jinshan Pan, Hegui Zhu, Su Guo,
- Abstract要約: フラクタルな特徴は、画像内のマイクロテクスチャ構造とマクロテクスチャ構造のリッチな詳細をキャプチャすることができる。
MFSRと呼ばれる低解像度画像のフラクタル特徴を取り入れた拡散モデルに基づく超解像法を提案する。
様々な顔および自然画像データセットで行われた実験は、MFSRが高品質な画像を生成することを実証している。
- 参考スコア(独自算出の注目度): 30.279489397832943
- License:
- Abstract: In the process of performing image super-resolution processing, the processing of complex localized information can have a significant impact on the quality of the image generated. Fractal features can capture the rich details of both micro and macro texture structures in an image. Therefore, we propose a diffusion model-based super-resolution method incorporating fractal features of low-resolution images, named MFSR. MFSR leverages these fractal features as reinforcement conditions in the denoising process of the diffusion model to ensure accurate recovery of texture information. MFSR employs convolution as a soft assignment to approximate the fractal features of low-resolution images. This approach is also used to approximate the density feature maps of these images. By using soft assignment, the spatial layout of the image is described hierarchically, encoding the self-similarity properties of the image at different scales. Different processing methods are applied to various types of features to enrich the information acquired by the model. In addition, a sub-denoiser is integrated in the denoising U-Net to reduce the noise in the feature maps during the up-sampling process in order to improve the quality of the generated images. Experiments conducted on various face and natural image datasets demonstrate that MFSR can generate higher quality images.
- Abstract(参考訳): 画像超解像処理の過程では、複雑な局所化情報の処理が生成した画像の品質に大きな影響を与える可能性がある。
フラクタルな特徴は、画像内のマイクロテクスチャ構造とマクロテクスチャ構造のリッチな詳細をキャプチャすることができる。
そこで本研究では,MFSRと呼ばれる低解像度画像のフラクタル特徴を取り入れた拡散モデルに基づく超解像法を提案する。
MFSRはこれらのフラクタル特性を拡散モデルの復調過程における強化条件として利用し、テクスチャ情報の正確な回復を確実にする。
MFSRは、低解像度画像のフラクタル特性を近似するために、ソフトな代入として畳み込みを用いる。
このアプローチは、これらの画像の密度特徴写像を近似するためにも用いられる。
ソフトアロケーションを用いて、画像の空間的レイアウトを階層的に記述し、画像の自己相似性を異なるスケールで符号化する。
様々な種類の特徴に対して異なる処理手法を適用し、モデルが取得した情報を強化する。
さらに、サブデノイザをデノイングU-Netに統合して、アップサンプリングプロセス中の特徴マップのノイズを低減し、生成した画像の品質を向上させる。
様々な顔および自然画像データセットで行われた実験は、MFSRが高品質な画像を生成することを実証している。
関連論文リスト
- Multi-scale Frequency Enhancement Network for Blind Image Deblurring [7.198959621445282]
視覚障害者のためのマルチスケール周波数拡張ネットワーク(MFENet)を提案する。
ぼやけた画像のマルチスケール空間およびチャネル情報をキャプチャするために,深度的に分離可能な畳み込みに基づくマルチスケール特徴抽出モジュール(MS-FE)を導入する。
提案手法は,視覚的品質と客観的評価の両指標において,優れた劣化性能を達成できることを実証する。
論文 参考訳(メタデータ) (2024-11-11T11:49:18Z) - Deep Learning based Optical Image Super-Resolution via Generative Diffusion Models for Layerwise in-situ LPBF Monitoring [4.667646675144656]
我々は,ビルドプレートの低解像度画像とビルドプレートの詳細な高解像度光学画像とを関連付けるために,生成的深層学習モデルを実装した。
低解像度Webカメラ画像からビルドプレートの現実的な高解像度画像を生成するために,条件付き潜在確率拡散モデルを訓練した。
また, 印刷部の3次元形状を再現し, 復元した試料の表面粗さを解析する枠組みを設計した。
論文 参考訳(メタデータ) (2024-09-20T02:59:25Z) - QMambaBSR: Burst Image Super-Resolution with Query State Space Model [55.56075874424194]
バースト超解像度は、複数のバースト低解像度フレームからサブピクセル情報を融合することにより、高画質でよりリッチな細部で高解像度の画像を再構成することを目的としている。
BusrtSRにおいて鍵となる課題は、高周波ノイズ障害を同時に抑制しつつ、ベースフレームの補完的なサブピクセルの詳細を抽出することである。
本稿では,Query State Space Model (QSSM) とAdaptive Up-Sampling Module (AdaUp) を組み合わせた新しいQuery Mamba Burst Super-Resolution (QMambaBSR) ネットワークを紹介する。
論文 参考訳(メタデータ) (2024-08-16T11:15:29Z) - Research on Image Super-Resolution Reconstruction Mechanism based on Convolutional Neural Network [8.739451985459638]
超解像アルゴリズムは、同一シーンから撮影された1つ以上の低解像度画像を高解像度画像に変換する。
再構成過程における画像の特徴抽出と非線形マッピング手法は,既存のアルゴリズムでは依然として困難である。
目的は、高解像度の画像から高品質で高解像度の画像を復元することである。
論文 参考訳(メタデータ) (2024-07-18T06:50:39Z) - MSDiff: Multi-Scale Diffusion Model for Ultra-Sparse View CT Reconstruction [5.5805994093893885]
マルチスケールディフ融合モデル(MSDiff)を用いた超スパースCT再構成法を提案する。
提案モデルは,包括的サンプリングと選択的スパースサンプリング技術の両方からの情報を統合する。
プロジェクションデータ内の固有相関を利用して、同値マスクを設計し、モデルがより効果的に注意を集中できるようにする。
論文 参考訳(メタデータ) (2024-05-09T14:52:32Z) - Bridging Component Learning with Degradation Modelling for Blind Image
Super-Resolution [69.11604249813304]
視覚障害者のためのコンポーネント分解・協調最適化ネットワーク(CDCN)を提案する。
CDCNは入力LR画像を特徴空間の構造と詳細成分に分解する。
本稿では,HR画像の細部と構造復元過程を協調的に監督する,劣化駆動型学習戦略を提案する。
論文 参考訳(メタデータ) (2022-12-03T14:53:56Z) - Joint Learning of Deep Texture and High-Frequency Features for
Computer-Generated Image Detection [24.098604827919203]
本稿では,CG画像検出のための深いテクスチャと高周波特徴を有する共同学習戦略を提案する。
セマンティックセグメンテーションマップを生成して、アフィン変換操作を誘導する。
原画像と原画像の高周波成分の組み合わせを、注意機構を備えたマルチブランチニューラルネットワークに供給する。
論文 参考訳(メタデータ) (2022-09-07T17:30:40Z) - Rank-Enhanced Low-Dimensional Convolution Set for Hyperspectral Image
Denoising [50.039949798156826]
本稿では,ハイパースペクトル(HS)画像の難解化問題に対処する。
ランク付き低次元畳み込み集合(Re-ConvSet)を提案する。
次に、Re-ConvSetを広く使われているU-Netアーキテクチャに組み込んで、HS画像復号法を構築する。
論文 参考訳(メタデータ) (2022-07-09T13:35:12Z) - DWDN: Deep Wiener Deconvolution Network for Non-Blind Image Deblurring [66.91879314310842]
本稿では,古典的なWienerデコンボリューションフレームワークを学習深い特徴と統合することにより,特徴空間における明示的なデコンボリューションプロセスを提案する。
マルチスケールのカスケード機能改善モジュールは、分離された深い特徴から退色画像を予測する。
提案したDeep Wienerデコンボリューションネットワークは,目に見える成果物が少なく,かつ,最先端の非盲点画像デコンボリューション手法を広いマージンで定量的に上回っていることを示す。
論文 参考訳(メタデータ) (2021-03-18T00:38:11Z) - Invertible Image Rescaling [118.2653765756915]
Invertible Rescaling Net (IRN) を開発した。
我々は、ダウンスケーリングプロセスにおいて、指定された分布に従う潜在変数を用いて、失われた情報の分布をキャプチャする。
論文 参考訳(メタデータ) (2020-05-12T09:55:53Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
畳み込みニューラルネットワーク(CNN)は、画像復元作業における従来のアプローチよりも劇的に改善されている。
ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とした,新しいアーキテクチャを提案する。
提案手法は,高解像度の空間的詳細を同時に保存しながら,複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
論文 参考訳(メタデータ) (2020-03-15T11:04:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。