論文の概要: ChemDFM-X: Towards Large Multimodal Model for Chemistry
- arxiv url: http://arxiv.org/abs/2409.13194v1
- Date: Fri, 20 Sep 2024 03:55:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 11:29:51.770718
- Title: ChemDFM-X: Towards Large Multimodal Model for Chemistry
- Title(参考訳): ChemDFM-X:化学のための大規模マルチモーダルモデルを目指して
- Authors: Zihan Zhao, Bo Chen, Jingpiao Li, Lu Chen, Liyang Wen, Pengyu Wang, Zichen Zhu, Danyang Zhang, Ziping Wan, Yansi Li, Zhongyang Dai, Xin Chen, Kai Yu,
- Abstract要約: 化学用クロスモーダル対話基盤モデル(ChemDFM-X)について紹介する。
近似計算とタスク固有モデル予測により、初期モダリティから、多様なマルチモーダルデータを生成する。
ChemDFM-Xは、様々なデータモダリティを持つ様々な化学タスクの広範な実験で評価される。
- 参考スコア(独自算出の注目度): 16.811223849365483
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Rapid developments of AI tools are expected to offer unprecedented assistance to the research of natural science including chemistry. However, neither existing unimodal task-specific specialist models nor emerging general large multimodal models (LMM) can cover the wide range of chemical data modality and task categories. To address the real demands of chemists, a cross-modal Chemical General Intelligence (CGI) system, which serves as a truly practical and useful research assistant utilizing the great potential of LMMs, is in great need. In this work, we introduce the first Cross-modal Dialogue Foundation Model for Chemistry (ChemDFM-X). Diverse multimodal data are generated from an initial modality by approximate calculations and task-specific model predictions. This strategy creates sufficient chemical training corpora, while significantly reducing excessive expense, resulting in an instruction-tuning dataset containing 7.6M data. After instruction finetuning, ChemDFM-X is evaluated on extensive experiments of different chemical tasks with various data modalities. The results demonstrate the capacity of ChemDFM-X for multimodal and inter-modal knowledge comprehension. ChemDFM-X marks a significant milestone toward aligning all modalities in chemistry, a step closer to CGI.
- Abstract(参考訳): AIツールの急速な開発は、化学を含む自然科学の研究に前例のない支援を提供すると予想されている。
しかし、既存の単一タスク特化モデルや、新しい大規模マルチモーダルモデル(LMM)は、幅広い化学データモダリティやタスクカテゴリをカバーできない。
化学者の真の要求に応えるために,LMMの潜在能力を活用した真に実用的で有用な研究アシスタントとして機能するクロスモーダルケミカル・ジェネラル・インテリジェンス(CGI)システムが必要である。
本稿では,ChemDFM-X (ChemDFM-X) を初めて導入する。
近似計算とタスク固有モデル予測により、初期モダリティから、多様なマルチモーダルデータを生成する。
この戦略は十分な化学訓練コーパスを生成し、過剰なコストを大幅に削減し、7.6Mデータを含む命令チューニングデータセットを生成する。
命令の微調整の後、ChemDFM-Xは様々なデータモダリティを持つ様々な化学タスクの広範な実験で評価される。
その結果,マルチモーダルおよびモーダル間知識理解におけるChemDFM-Xの能力が示された。
ChemDFM-Xは、CGIに一歩近づいた化学における全てのモダリティの整合に向けた重要なマイルストーンである。
関連論文リスト
- ChemEval: A Comprehensive Multi-Level Chemical Evaluation for Large Language Models [62.37850540570268]
この領域の既存のベンチマークは、化学研究専門家の特定の要求を適切に満たさない。
ChemEvalは化学の4つの重要な進歩レベルを特定し、42の異なる化学タスクで12次元のLCMを評価する。
その結果, LLMは文献の理解と指導に優れる一方で, 高度な化学知識を必要とするタスクでは不足していることがわかった。
論文 参考訳(メタデータ) (2024-09-21T02:50:43Z) - ChemVLM: Exploring the Power of Multimodal Large Language Models in Chemistry Area [50.15254966969718]
textbfChemVLMは、化学応用のためのオープンソースの化学マルチモーダル大規模言語モデルである。
ChemVLMは、テキストと視覚の化学情報の両方を理解する能力を高めるために、慎重にキュレートされたバイリンガルデータセットで訓練されている。
我々はChemVLMを、様々なタスクにおいて、オープンソースおよびプロプライエタリな多モーダルな大規模言語モデルに対してベンチマークする。
論文 参考訳(メタデータ) (2024-08-14T01:16:40Z) - PRESTO: Progressive Pretraining Enhances Synthetic Chemistry Outcomes [33.293741487835824]
MLLM(Multimodal Large Language Models)は、様々な科学分野において普及している。
しかし、現在のアプローチは化学反応を理解する上での複数の分子グラフ相互作用の重要な役割を無視することが多い。
PRESTOは、事前学習戦略とデータセット構成の包括的なベンチマークを統合することで、分子-テキストのモダリティギャップを橋渡しする新しいフレームワークである。
論文 参考訳(メタデータ) (2024-06-19T03:59:46Z) - ChemLLM: A Chemical Large Language Model [49.308528569982805]
大規模言語モデル(LLM)は化学応用において顕著な進歩を遂げた。
しかし、コミュニティには化学に特化したLLMが欠落している。
本稿では,化学に特化した最初のLLMを特徴とする包括的フレームワークであるChemLLMを紹介する。
論文 参考訳(メタデータ) (2024-02-10T01:11:59Z) - ChemDFM: A Large Language Foundation Model for Chemistry [27.864255196445324]
より汎用的で効率的なソリューションは、多くのタスクに対処し、幅広い化学分野における自由形式の対話をサポートするAIモデルである。
我々は化学文献や教科書から34Bトークンを学習し、2.7Mインストラクションを用いて微調整した化学用LLMのパイオニアであるChemDFMを開発した。
我々はHuggingface上のChemDFMの推論コード、評価データセット、モデルウェイトをオープンソース化した。
論文 参考訳(メタデータ) (2024-01-26T12:45:55Z) - Chemist-X: Large Language Model-empowered Agent for Reaction Condition Recommendation in Chemical Synthesis [57.70772230913099]
Chemist-Xは、検索増強生成(RAG)技術を用いた化学合成において、反応条件レコメンデーション(RCR)タスクを自動化する。
Chemist-Xはオンラインの分子データベースを尋問し、最新の文献データベースから重要なデータを蒸留する。
Chemist-Xは化学者の作業量を大幅に減らし、より根本的で創造的な問題に集中できるようにする。
論文 参考訳(メタデータ) (2023-11-16T01:21:33Z) - Towards Medical Artificial General Intelligence via Knowledge-Enhanced
Multimodal Pretraining [121.89793208683625]
医療人工知能(MAGI)は、1つの基礎モデルで異なる医療課題を解くことができる。
我々は、Micical-knedge-enhanced mulTimOdal pretRaining (motoR)と呼ばれる新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-04-26T01:26:19Z) - Improving Molecular Representation Learning with Metric
Learning-enhanced Optimal Transport [49.237577649802034]
分子レグレッション問題に対する一般化能力を高めるために,MROTと呼ばれる新しい最適輸送ベースアルゴリズムを開発した。
MROTは最先端のモデルよりも優れており、新しい物質の発見を加速する有望な可能性を示している。
論文 参考訳(メタデータ) (2022-02-13T04:56:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。