3D-GSW: 3D Gaussian Splatting for Robust Watermarking
- URL: http://arxiv.org/abs/2409.13222v2
- Date: Fri, 15 Nov 2024 08:11:34 GMT
- Title: 3D-GSW: 3D Gaussian Splatting for Robust Watermarking
- Authors: Youngdong Jang, Hyunje Park, Feng Yang, Heeju Ko, Euijin Choo, Sangpil Kim,
- Abstract summary: We introduce a robust watermarking method for 3D-GS that secures ownership of both the model and its rendered images.
Our proposed method remains robust against distortions in rendered images and model attacks while maintaining high rendering quality.
- Score: 5.52538716292462
- License:
- Abstract: As 3D Gaussian Splatting (3D-GS) gains significant attention and its commercial usage increases, the need for watermarking technologies to prevent unauthorized use of the 3D-GS models and rendered images has become increasingly important. In this paper, we introduce a robust watermarking method for 3D-GS that secures ownership of both the model and its rendered images. Our proposed method remains robust against distortions in rendered images and model attacks while maintaining high rendering quality. To achieve these objectives, we present Frequency-Guided Densification (FGD), which removes 3D Gaussians based on their contribution to rendering quality, enhancing real-time rendering and the robustness of the message. FGD utilizes Discrete Fourier Transform to split 3D Gaussians in high-frequency areas, improving rendering quality. Furthermore, we employ a gradient mask for 3D Gaussians and design a wavelet-subband loss to enhance rendering quality. Our experiments show that our method embeds the message in the rendered images invisibly and robustly against various attacks, including model distortion. Our method achieves state-of-the-art performance.
Related papers
- Beyond Gaussians: Fast and High-Fidelity 3D Splatting with Linear Kernels [51.08794269211701]
We introduce 3D Linear Splatting (3DLS), which replaces Gaussian kernels with linear kernels to achieve sharper and more precise results.
3DLS demonstrates state-of-the-art fidelity and accuracy, along with a 30% FPS improvement over baseline 3DGS.
arXiv Detail & Related papers (2024-11-19T11:59:54Z) - GaussianMarker: Uncertainty-Aware Copyright Protection of 3D Gaussian Splatting [41.90891053671943]
Digital watermarking techniques can be applied to embed ownership information discreetly within 3DGS models.
Naively embedding the watermark on a pre-trained 3DGS can cause obvious distortion in rendered images.
We propose an uncertainty-based method that constrains the perturbation of model parameters to achieve invisible watermarking for 3DGS.
arXiv Detail & Related papers (2024-10-31T08:08:54Z) - ScalingGaussian: Enhancing 3D Content Creation with Generative Gaussian Splatting [30.99112626706754]
The creation of high-quality 3D assets is paramount for applications in digital heritage, entertainment, and robotics.
Traditionally, this process necessitates skilled professionals and specialized software for modeling.
We introduce a novel 3D content creation framework, which generates 3D textures efficiently.
arXiv Detail & Related papers (2024-07-26T18:26:01Z) - GSD: View-Guided Gaussian Splatting Diffusion for 3D Reconstruction [52.04103235260539]
We present a diffusion model approach based on Gaussian Splatting representation for 3D object reconstruction from a single view.
The model learns to generate 3D objects represented by sets of GS ellipsoids.
The final reconstructed objects explicitly come with high-quality 3D structure and texture, and can be efficiently rendered in arbitrary views.
arXiv Detail & Related papers (2024-07-05T03:43:08Z) - 3D-HGS: 3D Half-Gaussian Splatting [5.766096863155448]
Photo-realistic 3D Reconstruction is a fundamental problem in 3D computer vision.
We propose to employ 3D Half-Gaussian (3D-HGS) kernels, which can be used as a plug-and-play kernel.
arXiv Detail & Related papers (2024-06-04T19:04:29Z) - Spec-Gaussian: Anisotropic View-Dependent Appearance for 3D Gaussian Splatting [55.71424195454963]
Spec-Gaussian is an approach that utilizes an anisotropic spherical Gaussian appearance field instead of spherical harmonics.
Our experimental results demonstrate that our method surpasses existing approaches in terms of rendering quality.
This improvement extends the applicability of 3D GS to handle intricate scenarios with specular and anisotropic surfaces.
arXiv Detail & Related papers (2024-02-24T17:22:15Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGS relies heavily on the point cloud produced by Structure-from-Motion (SfM) techniques.
We propose a novel method that applies a progressive propagation strategy to guide the densification of the 3D Gaussians.
Our method significantly surpasses 3DGS on the dataset, exhibiting an improvement of 1.15dB in terms of PSNR.
arXiv Detail & Related papers (2024-02-22T16:00:20Z) - Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering [71.44349029439944]
Recent 3D Gaussian Splatting method has achieved the state-of-the-art rendering quality and speed.
We introduce Scaffold-GS, which uses anchor points to distribute local 3D Gaussians.
We show that our method effectively reduces redundant Gaussians while delivering high-quality rendering.
arXiv Detail & Related papers (2023-11-30T17:58:57Z) - GaussianDiffusion: 3D Gaussian Splatting for Denoising Diffusion Probabilistic Models with Structured Noise [0.0]
This paper introduces a novel text to 3D content generation framework based on Gaussian splatting.
The challenge of achieving multi-view consistency in 3D generation significantly impedes modeling complexity and accuracy.
arXiv Detail & Related papers (2023-11-19T04:26:16Z) - DreamGaussian: Generative Gaussian Splatting for Efficient 3D Content Creation [55.661467968178066]
We propose DreamGaussian, a novel 3D content generation framework that achieves both efficiency and quality simultaneously.
Our key insight is to design a generative 3D Gaussian Splatting model with companioned mesh extraction and texture refinement in UV space.
In contrast to the occupancy pruning used in Neural Radiance Fields, we demonstrate that the progressive densification of 3D Gaussians converges significantly faster for 3D generative tasks.
arXiv Detail & Related papers (2023-09-28T17:55:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.