Understanding Stain Separation Improves Cross-Scanner Adenocarcinoma Segmentation with Joint Multi-Task Learning
- URL: http://arxiv.org/abs/2409.13246v1
- Date: Fri, 20 Sep 2024 06:12:52 GMT
- Title: Understanding Stain Separation Improves Cross-Scanner Adenocarcinoma Segmentation with Joint Multi-Task Learning
- Authors: Ho Heon Kim, Won Chan Jeong, Young Shin Ko, Young Jin Park,
- Abstract summary: Digital pathology has made significant advances in tumor diagnosis and segmentation, but image variability limits the effectiveness of current algorithms.
The COSAS (Cross-Organ and Cross-Scanner Adenocarcinoma) challenge addresses this issue by improving the resilience of segmentation algorithms to domain shift.
Our approach employs unsupervised learning through stain separation within a multi-task learning framework using a multi-decoder autoencoder.
- Score: 2.3470559413988936
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Digital pathology has made significant advances in tumor diagnosis and segmentation, but image variability due to differences in organs, tissue preparation, and acquisition - known as domain shift - limits the effectiveness of current algorithms. The COSAS (Cross-Organ and Cross-Scanner Adenocarcinoma Segmentation) challenge addresses this issue by improving the resilience of segmentation algorithms to domain shift, with Task 2 focusing on adenocarcinoma segmentation using a diverse dataset from six scanners, pushing the boundaries of clinical diagnostics. Our approach employs unsupervised learning through stain separation within a multi-task learning framework using a multi-decoder autoencoder. This model isolates stain matrix and stain density, allowing it to handle color variation and improve generalization across scanners. We further enhanced the robustness of the model with a mixture of stain augmentation techniques and used a U-net architecture for segmentation. The novelty of our method lies in the use of stain separation within a multi-task learning framework, which effectively disentangles histological structures from color variations. This approach shows promise for improving segmentation accuracy and generalization across different histopathological stains, paving the way for more reliable diagnostic tools in digital pathology.
Related papers
- Adenocarcinoma Segmentation Using Pre-trained Swin-UNet with Parallel Cross-Attention for Multi-Domain Imaging [0.2878844332549157]
We present a framework consist of pre-trained encoder with a Swin-UNet architecture enhanced by a parallel cross-attention module to tackle the problem of adenocarcinoma segmentation across different organs and scanners.
Experiment showed that our framework achieved segmentation scores of 0.7469 for the cross-organ track and 0.7597 for the cross-scanner track.
arXiv Detail & Related papers (2024-09-23T19:38:43Z) - Multi-target and multi-stage liver lesion segmentation and detection in multi-phase computed tomography scans [12.090385175034305]
Liver lesions vary significantly in their size, shape, texture, and contrast with respect to surrounding tissue.
Current state-of-the-art lesion segmentation networks use the encoder-decoder design paradigm based on the UNet architecture.
Our approach improves relative liver lesion segmentation performance by 1.6% while reducing performance variability across subjects by 8% when compared to the current state-of-the-art models.
arXiv Detail & Related papers (2024-04-17T08:05:04Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - AGMDT: Virtual Staining of Renal Histology Images with Adjacency-Guided
Multi-Domain Transfer [9.8359439975283]
We propose a novel virtual staining framework AGMDT to translate images into other domains by avoiding pixel-level alignment.
Based on it, the proposed framework AGMDT discovers patch-level aligned pairs across the serial slices of multi-domains through glomerulus detection and bipartite graph matching.
Experimental results show that the proposed AGMDT achieves a good balance between the precise pixel-level alignment and unpaired domain transfer.
arXiv Detail & Related papers (2023-09-12T17:37:56Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Stain-invariant self supervised learning for histopathology image
analysis [74.98663573628743]
We present a self-supervised algorithm for several classification tasks within hematoxylin and eosin stained images of breast cancer.
Our method achieves the state-of-the-art performance on several publicly available breast cancer datasets.
arXiv Detail & Related papers (2022-11-14T18:16:36Z) - SeATrans: Learning Segmentation-Assisted diagnosis model via Transforme [13.63128987400635]
We propose Vision-Assisted diagnosis Transformer (SeATrans) to transfer the segmentation knowledge to the disease diagnosis network.
We first propose an asymmetric multi-scale interaction strategy to correlate each single low-level diagnosis feature with multi-scale segmentation features.
To model the segmentation-diagnosis interaction, SeA-block first embeds the diagnosis feature based on the segmentation information via the encoder, and then transfers the embedding back to the diagnosis feature space by a decoder.
arXiv Detail & Related papers (2022-06-12T15:10:33Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Robust Medical Instrument Segmentation Challenge 2019 [56.148440125599905]
Intraoperative tracking of laparoscopic instruments is often a prerequisite for computer and robotic-assisted interventions.
Our challenge was based on a surgical data set comprising 10,040 annotated images acquired from a total of 30 surgical procedures.
The results confirm the initial hypothesis, namely that algorithm performance degrades with an increasing domain gap.
arXiv Detail & Related papers (2020-03-23T14:35:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.