Towards LifeSpan Cognitive Systems
- URL: http://arxiv.org/abs/2409.13265v1
- Date: Fri, 20 Sep 2024 06:54:00 GMT
- Title: Towards LifeSpan Cognitive Systems
- Authors: Yu Wang, Chi Han, Tongtong Wu, Xiaoxin He, Wangchunshu Zhou, Nafis Sadeq, Xiusi Chen, Zexue He, Wei Wang, Gholamreza Haffari, Heng Ji, Julian McAuley,
- Abstract summary: Building a human-like system that continuously interacts with complex environments presents several key challenges.
We refer to this envisioned system as the LifeSpan Cognitive System (LSCS)
A critical feature of LSCS is its ability to engage in incremental and rapid updates while retaining and accurately recalling past experiences.
- Score: 94.8985839251011
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Building a human-like system that continuously interacts with complex environments -- whether simulated digital worlds or human society -- presents several key challenges. Central to this is enabling continuous, high-frequency interactions, where the interactions are termed experiences. We refer to this envisioned system as the LifeSpan Cognitive System (LSCS). A critical feature of LSCS is its ability to engage in incremental and rapid updates while retaining and accurately recalling past experiences. We identify two major challenges in achieving this: (1) Abstraction and Experience Merging, and (2) Long-term Retention with Accurate Recall. These properties are essential for storing new experiences, organizing past experiences, and responding to the environment in ways that leverage relevant historical data. Unlike language models with continual learning, which typically rely on large corpora for fine-tuning and focus on improving performance within specific domains or tasks, LSCS must rapidly and incrementally update with new information from its environment at a high frequency. Existing technologies with the potential of solving the above two major challenges can be classified into four classes based on a conceptual metric called Storage Complexity, which measures the relative space required to store past experiences. Each of these four classes of technologies has its own strengths and limitations. Given that none of the existing technologies can achieve LSCS alone, we propose a novel paradigm for LSCS that integrates all four classes of technologies. The new paradigm operates through two core processes: Absorbing Experiences and Generating Responses.
Related papers
- Self-Updatable Large Language Models with Parameter Integration [21.742149718161716]
Small-scale experiences, such as interactions with surrounding objects, require frequent integration in large language models.
Current methods embed experiences within model parameters using continual learning, model editing, or knowledge distillation techniques.
We propose SELF-PARAM, which embeds experiences directly into model parameters and ensures near-optimal efficacy and long-term retention.
arXiv Detail & Related papers (2024-10-01T08:18:17Z) - Synesthesia of Machines (SoM)-Enhanced ISAC Precoding for Vehicular Networks with Double Dynamics [15.847713094328286]
Integrated sensing and communication (ISAC) technology plays a crucial role in vehicular networks.
Double dynamics present significant challenges for real-time ISAC precoding design.
We propose a synesthesia of machine (SoM)-enhanced precoding paradigm.
arXiv Detail & Related papers (2024-08-24T10:35:10Z) - Continual Learning for Temporal-Sensitive Question Answering [12.76582814745124]
In real-world applications, it's crucial for models to continually acquire knowledge over time, rather than relying on a static, complete dataset.
Our paper investigates strategies that enable models to adapt to the ever-evolving information landscape.
We propose a training framework for CLTSQA that integrates temporal memory replay and temporal contrastive learning.
arXiv Detail & Related papers (2024-07-17T10:47:43Z) - Scalable Language Model with Generalized Continual Learning [58.700439919096155]
The Joint Adaptive Re-ization (JARe) is integrated with Dynamic Task-related Knowledge Retrieval (DTKR) to enable adaptive adjustment of language models based on specific downstream tasks.
Our method demonstrates state-of-the-art performance on diverse backbones and benchmarks, achieving effective continual learning in both full-set and few-shot scenarios with minimal forgetting.
arXiv Detail & Related papers (2024-04-11T04:22:15Z) - Recall-Oriented Continual Learning with Generative Adversarial
Meta-Model [5.710971447109951]
We propose a recall-oriented continual learning framework to address the stability-plasticity dilemma.
Inspired by the human brain's ability to separate the mechanisms responsible for stability and plasticity, our framework consists of a two-level architecture.
We show that our framework not only effectively learns new knowledge without any disruption but also achieves high stability of previous knowledge.
arXiv Detail & Related papers (2024-03-05T16:08:59Z) - Towards Ubiquitous Semantic Metaverse: Challenges, Approaches, and
Opportunities [68.03971716740823]
In recent years, ubiquitous semantic Metaverse has been studied to revolutionize immersive cyber-virtual experiences for augmented reality (AR) and virtual reality (VR) users.
This survey focuses on the representation and intelligence for the four fundamental system components in ubiquitous Metaverse.
arXiv Detail & Related papers (2023-07-13T11:14:46Z) - LIBERO: Benchmarking Knowledge Transfer for Lifelong Robot Learning [64.55001982176226]
LIBERO is a novel benchmark of lifelong learning for robot manipulation.
We focus on how to efficiently transfer declarative knowledge, procedural knowledge, or the mixture of both.
We develop an extendible procedural generation pipeline that can in principle generate infinitely many tasks.
arXiv Detail & Related papers (2023-06-05T23:32:26Z) - System Design for an Integrated Lifelong Reinforcement Learning Agent
for Real-Time Strategy Games [34.3277278308442]
Continual/lifelong learning (LL) involves minimizing forgetting of old tasks while maximizing a model's capability to learn new tasks.
We introduce the Lifelong Reinforcement Learning Components Framework (L2RLCF), which standardizes L2RL systems and assimilates different continual learning components.
We describe a case study that demonstrates how multiple independently-developed LL components can be integrated into a single realized system.
arXiv Detail & Related papers (2022-12-08T23:32:57Z) - Learning Neuro-Symbolic Skills for Bilevel Planning [63.388694268198655]
Decision-making is challenging in robotics environments with continuous object-centric states, continuous actions, long horizons, and sparse feedback.
Hierarchical approaches, such as task and motion planning (TAMP), address these challenges by decomposing decision-making into two or more levels of abstraction.
Our main contribution is a method for learning parameterized polices in combination with operators and samplers.
arXiv Detail & Related papers (2022-06-21T19:01:19Z) - Towards Lifelong Learning of End-to-end ASR [81.15661413476221]
Lifelong learning aims to enable a machine to sequentially learn new tasks from new datasets describing the changing real world without forgetting the previously learned knowledge.
An overall relative reduction of 28.7% in WER was achieved compared to the fine-tuning baseline when sequentially learning on three very different benchmark corpora.
arXiv Detail & Related papers (2021-04-04T13:48:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.