Synesthesia of Machines (SoM)-Enhanced ISAC Precoding for Vehicular Networks with Double Dynamics
- URL: http://arxiv.org/abs/2408.13546v1
- Date: Sat, 24 Aug 2024 10:35:10 GMT
- Title: Synesthesia of Machines (SoM)-Enhanced ISAC Precoding for Vehicular Networks with Double Dynamics
- Authors: Zonghui Yang, Shijian Gao, Xiang Cheng, Liuqing Yang,
- Abstract summary: Integrated sensing and communication (ISAC) technology plays a crucial role in vehicular networks.
Double dynamics present significant challenges for real-time ISAC precoding design.
We propose a synesthesia of machine (SoM)-enhanced precoding paradigm.
- Score: 15.847713094328286
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Integrated sensing and communication (ISAC) technology plays a crucial role in vehicular networks. However, the communication channel within this context exhibits time-varying characteristics, and potential targets may move rapidly, resulting in double dynamics. These presents significant challenges for real-time ISAC precoding design that have not been thoroughly explored. While optimization-based precoding methods have been extensively studied, they are computationally complex and heavily rely on perfect prior information that is rarely available in situations with double dynamics. In this paper, we propose a synesthesia of machine (SoM)-enhanced precoding paradigm, where the base station leverages various modalities such as positioning and channel information to adapt to double dynamics, and effectively utilizes environmental information to stretch ISAC performance boundaries through a deep reinforcement learning framework. Additionally, a parameter-shared actor-critic architecture is tailored to expedite training in complex state and action spaces. Extensive experimental validation has demonstrated the multifaceted superiority of our method over existing approaches.
Related papers
- Joint Source-Channel Coding: Fundamentals and Recent Progress in
Practical Designs [6.059175509501795]
Joint source-channel coding (JSCC) offers an alternative end-to-end approach by optimizing compression and channel coding together.
This article provides an overview of the information theoretic foundations of J SCC, surveys practical J SCC designs over the decades, and discusses the reasons for their limited adoption in practical systems.
arXiv Detail & Related papers (2024-09-26T06:10:29Z) - Context-Conditioned Spatio-Temporal Predictive Learning for Reliable V2V Channel Prediction [25.688521281119037]
Vehicle-to-Vehicle (V2V) channel state information (CSI) prediction is challenging and crucial for optimizing downstream tasks.
Traditional prediction approaches focus on four-dimensional (4D) CSI, which includes predictions over time, bandwidth, and antenna (TX and RX) space.
We propose a novel context-conditionedtemporal predictive learning method to capture dependencies within 4D CSI data.
arXiv Detail & Related papers (2024-09-16T04:15:36Z) - Semantic Communication for Cooperative Perception using HARQ [51.148203799109304]
We leverage an importance map to distill critical semantic information, introducing a cooperative perception semantic communication framework.
To counter the challenges posed by time-varying multipath fading, our approach incorporates the use of frequency-division multiplexing (OFDM) along with channel estimation and equalization strategies.
We introduce a novel semantic error detection method that is integrated with our semantic communication framework in the spirit of hybrid automatic repeated request (HARQ)
arXiv Detail & Related papers (2024-08-29T08:53:26Z) - Doubly-Dynamic ISAC Precoding for Vehicular Networks: A Constrained Deep Reinforcement Learning (CDRL) Approach [11.770137653756697]
Integrated sensing and communication (ISAC) technology is essential for supporting vehicular networks.
The communication channel in this scenario exhibits time variations, and the potential targets may move rapidly, resulting in double dynamics.
We propose using constrained deep reinforcement learning to facilitate dynamic updates to the ISAC precoder.
arXiv Detail & Related papers (2024-05-23T09:19:14Z) - Agent-driven Generative Semantic Communication with Cross-Modality and Prediction [57.335922373309074]
We propose a novel agent-driven generative semantic communication framework based on reinforcement learning.
In this work, we develop an agent-assisted semantic encoder with cross-modality capability, which can track the semantic changes, channel condition, to perform adaptive semantic extraction and sampling.
The effectiveness of the designed models has been verified using the UA-DETRAC dataset, demonstrating the performance gains of the overall A-GSC framework.
arXiv Detail & Related papers (2024-04-10T13:24:27Z) - GPT-ST: Generative Pre-Training of Spatio-Temporal Graph Neural Networks [24.323017830938394]
This work aims to address challenges by introducing a pre-training framework that seamlessly integrates with baselines and enhances their performance.
The framework is built upon two key designs: (i) We propose a.
apple-to-apple mask autoencoder as a pre-training model for learning-temporal dependencies.
These modules are specifically designed to capture intra-temporal customized representations and semantic- and inter-cluster relationships.
arXiv Detail & Related papers (2023-11-07T02:36:24Z) - A Meta-Learning Based Precoder Optimization Framework for Rate-Splitting
Multiple Access [53.191806757701215]
We propose the use of a meta-learning based precoder optimization framework to directly optimize the Rate-Splitting Multiple Access (RSMA) precoders with partial Channel State Information at the Transmitter (CSIT)
By exploiting the overfitting of the compact neural network to maximize the explicit Average Sum-Rate (ASR) expression, we effectively bypass the need for any other training data while minimizing the total running time.
Numerical results reveal that the meta-learning based solution achieves similar ASR performance to conventional precoder optimization in medium-scale scenarios, and significantly outperforms sub-optimal low complexity precoder algorithms in the large-scale
arXiv Detail & Related papers (2023-07-17T20:31:41Z) - ASR: Attention-alike Structural Re-parameterization [53.019657810468026]
We propose a simple-yet-effective attention-alike structural re- parameterization (ASR) that allows us to achieve SRP for a given network while enjoying the effectiveness of the attention mechanism.
In this paper, we conduct extensive experiments from a statistical perspective and discover an interesting phenomenon Stripe Observation, which reveals that channel attention values quickly approach some constant vectors during training.
arXiv Detail & Related papers (2023-04-13T08:52:34Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
We propose a novel Reinforcement Learning (RL) approach to design generic Congestion Control (CC) algorithms.
Our solution, MARLIN, uses the Soft Actor-Critic algorithm to maximize both entropy and return.
We trained MARLIN on a real network with varying background traffic patterns to overcome the sim-to-real mismatch.
arXiv Detail & Related papers (2023-02-02T18:27:20Z) - Topics in Deep Learning and Optimization Algorithms for IoT Applications
in Smart Transportation [0.0]
This thesis investigates how different optimization algorithms and machine learning techniques can be leveraged to improve system performance.
In the first topic, we propose an optimal transmission frequency management scheme using decentralized ADMM-based method.
In the second topic, we leverage graph neural network (GNN) for demand prediction for shared bikes.
In the last topic, we consider a highway traffic network scenario where frequent lane changing behaviors may occur with probability.
arXiv Detail & Related papers (2022-10-13T11:45:30Z) - Multi-Exit Semantic Segmentation Networks [78.44441236864057]
We propose a framework for converting state-of-the-art segmentation models to MESS networks.
specially trained CNNs that employ parametrised early exits along their depth to save during inference on easier samples.
We co-optimise the number, placement and architecture of the attached segmentation heads, along with the exit policy, to adapt to the device capabilities and application-specific requirements.
arXiv Detail & Related papers (2021-06-07T11:37:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.