論文の概要: SLaVA-CXR: Small Language and Vision Assistant for Chest X-ray Report Automation
- arxiv url: http://arxiv.org/abs/2409.13321v1
- Date: Fri, 20 Sep 2024 08:28:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 07:40:00.760692
- Title: SLaVA-CXR: Small Language and Vision Assistant for Chest X-ray Report Automation
- Title(参考訳): SLaVA-CXR:胸部X線レポート自動化のための小言語と視覚アシスタント
- Authors: Jinge Wu, Yunsoo Kim, Daqian Shi, David Cliffton, Fenglin Liu, Honghan Wu,
- Abstract要約: 我々はChest X-Rayレポートの自動化に使用できるオープンソースのSmall Language and Vision Assistant (SLaVA-CXR)を提案する。
そこで我々はまず,放射線科医の認知発達をシミュレートしたRe$3$Training法を提案する。
そこで,プライバシー規制に準拠した高品質で多様な学習コーパスを生成できるデータ合成手法RADEXを提案する。
- 参考スコア(独自算出の注目度): 15.427090374635826
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Inspired by the success of large language models (LLMs), there is growing research interest in developing LLMs in the medical domain to assist clinicians. However, for hospitals, using closed-source commercial LLMs involves privacy issues, and developing open-source public LLMs requires large-scale computational resources, which are usually limited, especially in resource-efficient regions and low-income countries. We propose an open-source Small Language and Vision Assistant (SLaVA-CXR) that can be used for Chest X-Ray report automation. To efficiently train a small assistant, we first propose the Re$^3$Training method, which simulates the cognitive development of radiologists and optimizes the model in the Recognition, Reasoning, and Reporting training manner. Then, we introduce a data synthesis method, RADEX, which can generate a high-quality and diverse training corpus with privacy regulation compliance. The extensive experiments show that our SLaVA-CXR built on a 2.7B backbone not only outperforms but also achieves 6 times faster inference efficiency than previous state-of-the-art larger models.
- Abstract(参考訳): 大規模言語モデル(LLMs)の成功に触発されて、臨床医を支援する医療分野におけるLSMの開発への研究関心が高まっている。
しかし、病院では、クローズドソースの商用LCMを使用するにはプライバシーの問題があり、特に資源効率のよい地域や低所得国では、大規模な計算資源を必要とする。
我々はChest X-Rayレポートの自動化に使用できるオープンソースのSmall Language and Vision Assistant (SLaVA-CXR)を提案する。
そこで我々はまず,放射線技師の認知発達をシミュレートしたRe$3$Training法を提案し,認識・推論・報告の訓練方法においてモデルを最適化する。
そこで,プライバシー規制に準拠した高品質で多様な学習コーパスを生成できるデータ合成手法RADEXを提案する。
実験の結果,SLaVA-CXRは2.7Bのバックボーン上に構築されており,従来の最先端モデルよりも6倍高速な推論効率を実現していることがわかった。
関連論文リスト
- Leveraging Large Language Models for Medical Information Extraction and Query Generation [2.1793134762413433]
本稿では,大言語モデル(LLM)を臨床試験検索プロセスに統合するシステムを提案する。
クエリ生成には6つのLCMを評価し,最小限の計算資源を必要とする,オープンソースと比較的小さなモデルに着目した。
論文 参考訳(メタデータ) (2024-10-31T12:01:51Z) - Generative LLM Powered Conversational AI Application for Personalized Risk Assessment: A Case Study in COVID-19 [6.367429891237191]
大規模言語モデル(LLM)は、様々な自然言語タスクにおいて顕著な能力を示している。
本研究は,ヒトとAIの会話をストリーミングすることで,LSMを用いた新たな疾病リスク評価手法を示す。
論文 参考訳(メタデータ) (2024-09-23T13:55:13Z) - Large Language Models Make Sample-Efficient Recommender Systems [46.19962322824368]
大規模言語モデル(LLM)は自然言語処理(NLP)分野において顕著な進歩を遂げている。
これによってレコメンデーターシステム(RS)に採用する新たな機会が開ける
論文 参考訳(メタデータ) (2024-06-04T14:46:25Z) - XAI4LLM. Let Machine Learning Models and LLMs Collaborate for Enhanced In-Context Learning in Healthcare [16.79952669254101]
多層構造プロンプトを用いたゼロショット/ファウショットインコンテキスト学習(ICL)のための新しい手法を開発した。
また、ユーザと大規模言語モデル(LLM)間の2つのコミュニケーションスタイルの有効性についても検討する。
本研究は,性別バイアスや偽陰性率などの診断精度とリスク要因を系統的に評価する。
論文 参考訳(メタデータ) (2024-05-10T06:52:44Z) - TriSum: Learning Summarization Ability from Large Language Models with Structured Rationale [66.01943465390548]
本稿では,大規模言語モデルのテキスト要約能力を,コンパクトで局所的なモデルに抽出するフレームワークであるTriSumを紹介する。
本手法は,様々なベンチマーク上での局所モデル性能を向上させる。
また、要約の合理性に関する洞察を提供することで、解釈可能性も向上する。
論文 参考訳(メタデータ) (2024-03-15T14:36:38Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
強化学習(Reinforcement Learning, RL)は、将来の行動方針をフィードバックで改善することにより、シーケンシャルな意思決定問題の事実上の標準的実践となった。
大規模言語モデル(LLM)の最近の発展は、言語理解と生成において印象的な能力を示したが、探索と自己改善能力に欠けていた。
我々はLINVITというアルゴリズムを開発し、LLMガイダンスを値ベースRLの正規化因子として組み込んで学習に必要なデータ量を大幅に削減する。
論文 参考訳(メタデータ) (2024-02-25T20:07:13Z) - Large Language Model Distilling Medication Recommendation Model [61.89754499292561]
大規模言語モデル(LLM)の強力な意味理解と入力非依存特性を利用する。
本研究は, LLMを用いて既存の薬剤推奨手法を変換することを目的としている。
これを軽減するため,LLMの習熟度をよりコンパクトなモデルに伝達する機能レベルの知識蒸留技術を開発した。
論文 参考訳(メタデータ) (2024-02-05T08:25:22Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - Joint Prediction and Denoising for Large-scale Multilingual
Self-supervised Learning [69.77973092264338]
我々は、より強力な技術がより効率的な事前トレーニングをもたらし、SSLをより多くの研究グループに開放することを示します。
我々は,WavLMのジョイント予測を拡張し,136言語にまたがる40k時間のデータをデノベーションするWavLabLMを提案する。
このモデルではXLS-Rの性能を94%維持でき、データの3%しか保持できない。
論文 参考訳(メタデータ) (2023-09-26T23:55:57Z) - LAMM: Language-Assisted Multi-Modal Instruction-Tuning Dataset,
Framework, and Benchmark [81.42376626294812]
本稿では,Language-Assisted Multi-Modalインストラクションチューニングデータセット,フレームワーク,ベンチマークを提案する。
我々の目標は、MLLMのトレーニングと評価のための成長するエコシステムとしてLAMMを確立することです。
本稿では,2次元および3次元視覚のための広範囲な視覚タスクをカバーする包括的データセットとベンチマークを提案する。
論文 参考訳(メタデータ) (2023-06-11T14:01:17Z) - Improving Small Language Models on PubMedQA via Generative Data
Augmentation [4.96649519549027]
大規模言語モデル (LLM) は自然言語処理の分野で顕著な進歩を遂げている。
小型言語モデル(SLM)はその効率で知られているが、限られた能力と訓練データに悩まされることが多い。
医療領域におけるSLMの改善を目的とした,LLMに基づく生成データ拡張を用いた新しい手法を提案する。
論文 参考訳(メタデータ) (2023-05-12T23:49:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。