論文の概要: ALPEC: A Comprehensive Evaluation Framework and Dataset for Machine Learning-Based Arousal Detection in Clinical Practice
- arxiv url: http://arxiv.org/abs/2409.13367v1
- Date: Fri, 20 Sep 2024 10:03:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 07:28:56.485594
- Title: ALPEC: A Comprehensive Evaluation Framework and Dataset for Machine Learning-Based Arousal Detection in Clinical Practice
- Title(参考訳): ALPEC: 臨床における機械学習による覚醒検出のための総合的評価フレームワークとデータセット
- Authors: Stefan Kraft, Andreas Theissler, Vera Wienhausen-Wilke, Philipp Walter, Gjergji Kasneci,
- Abstract要約: 本稿では,覚醒剤の局所化と正確な事象数(ALPEC)を重視した新しい後処理・評価フレームワークを提案する。
本論文と並行してデータセットを公開し,マルチモーダルデータを利用した覚醒的オンセット検出の利点を実証する。
- 参考スコア(独自算出の注目度): 8.530898223158843
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Detecting arousals in sleep is essential for diagnosing sleep disorders. However, using Machine Learning (ML) in clinical practice is impeded by fundamental issues, primarily due to mismatches between clinical protocols and ML methods. Clinicians typically annotate only the onset of arousals, while ML methods rely on annotations for both the beginning and end. Additionally, there is no standardized evaluation methodology tailored to clinical needs for arousal detection models. This work addresses these issues by introducing a novel post-processing and evaluation framework emphasizing approximate localization and precise event count (ALPEC) of arousals. We recommend that ML practitioners focus on detecting arousal onsets, aligning with clinical practice. We examine the impact of this shift on current training and evaluation schemes, addressing simplifications and challenges. We utilize a novel comprehensive polysomnographic dataset (CPS) that reflects the aforementioned clinical annotation constraints and includes modalities not present in existing polysomnographic datasets. We release the dataset alongside this paper, demonstrating the benefits of leveraging multimodal data for arousal onset detection. Our findings significantly contribute to integrating ML-based arousal detection in clinical settings, reducing the gap between technological advancements and clinical needs.
- Abstract(参考訳): 睡眠障害の診断には睡眠中の覚醒剤の検出が不可欠である。
しかし、臨床実践における機械学習(ML)の使用は、主に臨床プロトコルとMLメソッドのミスマッチによって、基本的な問題によって妨げられている。
臨床医は通常、覚醒の開始のみに注釈を付けるが、MLメソッドは開始と終了の両方にアノテーションに依存する。
また、覚醒検出モデルに対する臨床ニーズに合わせて標準化された評価手法は存在しない。
本研究は, 覚醒剤の局所化と正確な事象数(ALPEC)を重視した新しい後処理・評価フレームワークを導入することで, これらの課題に対処する。
我々は,ML実践者が,臨床実践と整合して覚醒的発症を検出することに注力することを推奨する。
この変化が現在のトレーニングや評価方法に与える影響について検討し、単純化と課題に対処する。
我々は、上記の臨床アノテーション制約を反映し、既存のポリソノグラフィーデータセットに存在しないモダリティを含む、新しい包括的ポリソノグラフィーデータセット(CPS)を利用する。
本論文と並行してデータセットを公開し,マルチモーダルデータを利用した覚醒的オンセット検出の利点を実証する。
本研究は,MLに基づく覚醒検出を臨床環境に統合し,技術進歩と臨床ニーズとのギャップを減らした。
関連論文リスト
- How Deep is your Guess? A Fresh Perspective on Deep Learning for Medical Time-Series Imputation [6.547981908229007]
深層学習を用いた時系列計算のための新しい分類フレームワークを提案する。
文献における概念的ギャップと既存のレビューを識別することにより、ニューラル・インパテーション・フレームワークの帰納的バイアスに基づく分類法を考案する。
論文 参考訳(メタデータ) (2024-07-11T12:33:28Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
本研究は, スマートフォンで撮影した画像と本質的な臨床および人口統計情報を統合することで, 皮膚病変を分類する新しいマルチモーダル手法を提案する。
この手法の特徴は、超高解像度画像予測に焦点を当てた補助的なタスクの統合である。
PAD-UFES20データセットを用いて,様々なディープラーニングアーキテクチャを用いて実験を行った。
論文 参考訳(メタデータ) (2024-02-16T05:16:20Z) - Assertion Detection Large Language Model In-context Learning LoRA
Fine-tuning [2.401755243180179]
本稿では,大規模言語モデル(LLM)を多数の医療データに基づいて事前学習してアサーション検出を行う手法を提案する。
提案手法は従来の手法よりも0.31高い0.74のF-1を達成した。
論文 参考訳(メタデータ) (2024-01-31T05:11:00Z) - Multimodal Pretraining of Medical Time Series and Notes [45.89025874396911]
ディープラーニングモデルは、意味のあるパターンを抽出する際の約束を示すが、広範囲なラベル付きデータが必要である。
本稿では,臨床測定値とノートのアライメントに着目し,自己指導型事前学習を用いた新しいアプローチを提案する。
病院内での死亡予測や表現型化などの下流タスクでは、データのごく一部がラベル付けされた設定において、ベースラインよりも優れています。
論文 参考訳(メタデータ) (2023-12-11T21:53:40Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
深層学習モデルは、自動的にMS病変を分節する約束を示しているが、正確な注釈付きデータの不足は、この分野の進歩を妨げている。
我々は,MS病変の不均衡分布とファジィ境界を考慮したDecoupled Hard Label Correction(DHLC)戦略を導入する。
また,集約型中央モデルを利用したCELC(Centrally Enhanced Label Correction)戦略も導入した。
論文 参考訳(メタデータ) (2023-08-31T00:36:10Z) - KIDS: kinematics-based (in)activity detection and segmentation in a
sleep case study [5.707737640557724]
睡眠行動とベッド内の運動は、人々の神経生理学的健康に関する豊富な情報を含んでいる。
本稿では,臨床的に有意な関節キネマティクスに基づく客観的(in)アクティビティ検出とセグメンテーションのためのオンラインベイズ確率的枠組みを提案する。
論文 参考訳(メタデータ) (2023-01-04T16:24:01Z) - Detecting Shortcut Learning for Fair Medical AI using Shortcut Testing [62.9062883851246]
機械学習は医療の改善に大いに貢献するが、その利用が健康格差を広めたり増幅したりしないことを確実にすることは重要である。
アルゴリズムの不公平性の潜在的な要因の1つ、ショートカット学習は、トレーニングデータにおける不適切な相関に基づいてMLモデルが予測した時に発生する。
マルチタスク学習を用いて,臨床MLシステムの公平性評価の一環として,ショートカット学習の評価と緩和を行う手法を提案する。
論文 参考訳(メタデータ) (2022-07-21T09:35:38Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
治療のパーソナライズされた効果を見積もるのは複雑だが、普及している問題である。
ヘテロジニアス処理効果推定に関する機械学習文献の最近の進歩は、洗練されたが不透明なツールの多くを生み出した。
我々は、ポストホックな特徴重要度法を用いて、モデルの予測に影響を及ぼす特徴を特定する。
論文 参考訳(メタデータ) (2022-06-16T17:59:05Z) - Federated Cycling (FedCy): Semi-supervised Federated Learning of
Surgical Phases [57.90226879210227]
FedCyは、FLと自己教師付き学習を組み合わせた半教師付き学習(FSSL)手法で、ラベル付きビデオとラベルなしビデオの両方の分散データセットを利用する。
外科的段階の自動認識作業において,最先端のFSSL法よりも顕著な性能向上を示した。
論文 参考訳(メタデータ) (2022-03-14T17:44:53Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
臨床診断は、臨床ノートに基づいて患者に診断符号を割り当てることを目的としており、臨床意思決定において重要な役割を担っている。
本稿では,臨床自動診断のための継承誘導階層と共起グラフの伝播を組み合わせた新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-01-27T13:16:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。