論文の概要: How Deep is your Guess? A Fresh Perspective on Deep Learning for Medical Time-Series Imputation
- arxiv url: http://arxiv.org/abs/2407.08442v1
- Date: Thu, 11 Jul 2024 12:33:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 17:39:27.528790
- Title: How Deep is your Guess? A Fresh Perspective on Deep Learning for Medical Time-Series Imputation
- Title(参考訳): 指導の深さはどれくらいか? : 医学的時系列インプットのための深層学習の新たな展望
- Authors: Linglong Qian, Tao Wang, Jun Wang, Hugh Logan Ellis, Robin Mitra, Richard Dobson, Zina Ibrahim,
- Abstract要約: 深層学習を用いた時系列計算のための新しい分類フレームワークを提案する。
文献における概念的ギャップと既存のレビューを識別することにより、ニューラル・インパテーション・フレームワークの帰納的バイアスに基づく分類法を考案する。
- 参考スコア(独自算出の注目度): 6.547981908229007
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a novel classification framework for time-series imputation using deep learning, with a particular focus on clinical data. By identifying conceptual gaps in the literature and existing reviews, we devise a taxonomy grounded on the inductive bias of neural imputation frameworks, resulting in a classification of existing deep imputation strategies based on their suitability for specific imputation scenarios and data-specific properties. Our review further examines the existing methodologies employed to benchmark deep imputation models, evaluating their effectiveness in capturing the missingness scenarios found in clinical data and emphasising the importance of reconciling mathematical abstraction with clinical insights. Our classification aims to serve as a guide for researchers to facilitate the selection of appropriate deep learning imputation techniques tailored to their specific clinical data. Our novel perspective also highlights the significance of bridging the gap between computational methodologies and medical insights to achieve clinically sound imputation models.
- Abstract(参考訳): 本稿では,深層学習を用いた時系列計算のための新しい分類フレームワークについて紹介する。
文献における概念的ギャップと既存のレビューを識別することにより、ニューラル・インキュベーション・フレームワークの帰納的バイアスに基づく分類法を考案し、特定のインキュベーション・シナリオやデータ固有の特性に対して適合性に基づいて既存のディープ・インキュベーション・ストラテジーを分類する。
本研究は, 深層計算モデルのベンチマークに用いられている既存の手法について検討し, 臨床データの欠落シナリオを捉える上での有効性を検証し, 数学的抽象化を臨床的知見と整合させることの重要性を強調した。
本分類は,特定の臨床データに適合した適切な深層学習計算技術の選択を容易にするためのガイドとなることを目的としている。
我々の新しい視点は、臨床的に健全な計算モデルを達成するために、計算方法論と医学的洞察のギャップを埋めることの重要性も強調している。
関連論文リスト
- Advancing clinical trial outcomes using deep learning and predictive modelling: bridging precision medicine and patient-centered care [0.0]
深層学習と予測モデリングは、臨床試験設計、患者採用、リアルタイムモニタリングを最適化するための変換ツールとして登場した。
本研究では、畳み込みニューラルネットワーク(CNN)やトランスフォーマーモデルなどの深層学習技術の患者層化への応用について検討する。
生存分析や時系列予測を含む予測モデリング手法は、試行結果の予測、効率の向上、試行失敗率の低減に用いられている。
論文 参考訳(メタデータ) (2024-12-09T23:20:08Z) - Fine-tuning -- a Transfer Learning approach [0.22344294014777952]
電子健康記録(EHR)の欠落は、この貴重な資源に欠落するデータが豊富にあるため、しばしば妨げられる。
既存の深い計算手法は、計算処理とダウンストリーム解析の両方を組み込んだエンドツーエンドのパイプラインに依存している。
本稿では,モジュール型深層学習型計算・分類パイプラインの開発について検討する。
論文 参考訳(メタデータ) (2024-11-06T14:18:23Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
そこで本研究では,様々な種類の臨床イベント間の相互作用を捉えるために,潜伏状態空間生成モデルを提案する。
また,死亡率と臓器不全の関連性について有意な知見が得られた。
論文 参考訳(メタデータ) (2024-07-28T02:42:36Z) - Rethinking Model Prototyping through the MedMNIST+ Dataset Collection [0.11999555634662634]
本研究は,MedMNIST+データベースに対する評価環境の多様化のためのベンチマークを示す。
我々は、医用画像分類のための共通畳み込みニューラルネットワーク(CNN)とトランスフォーマーベースのアーキテクチャを徹底的に分析する。
この結果から,計算効率のよいトレーニングスキームと最新の基礎モデルは,高額なエンドツーエンドトレーニングとリソース強化アプローチのギャップを埋める上で有望であることが示唆された。
論文 参考訳(メタデータ) (2024-04-24T10:19:25Z) - Clairvoyance: A Pipeline Toolkit for Medical Time Series [95.22483029602921]
時系列学習は、データ駆動の*クリニカルな意思決定支援のパンとバターである*
Clairvoyanceは、ソフトウェアツールキットとして機能する、統合されたエンドツーエンドのオートMLフレンドリなパイプラインを提案する。
Clairvoyanceは、臨床時系列MLのための包括的で自動化可能なパイプラインの生存可能性を示す最初のものである。
論文 参考訳(メタデータ) (2023-10-28T12:08:03Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
臨床試験は薬物開発に不可欠であるが、しばしば高価で非効率な患者募集に苦しむ。
近年,患者と臨床試験を自動マッチングすることで患者採用を高速化する機械学習モデルが提案されている。
本稿では,TREement という名前の動的ツリーベースメモリネットワークモデルを導入する。
論文 参考訳(メタデータ) (2023-07-19T12:35:09Z) - On the Importance of Clinical Notes in Multi-modal Learning for EHR Data [0.0]
電子健康記録データと臨床ノートを併用することにより,患者モニタリングの予測性能が向上することが従来研究で示されている。
EHRデータと臨床ノートを組み合わせることで、最先端のEHRデータモデルよりもパフォーマンスが大幅に向上することを確認した。
次に、臨床医のメモよりも、患者の状態に関するより広い文脈を含むメモのサブセットから、改善がほぼ排他的に生じることを示す分析を行った。
論文 参考訳(メタデータ) (2022-12-06T15:18:57Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
治療のパーソナライズされた効果を見積もるのは複雑だが、普及している問題である。
ヘテロジニアス処理効果推定に関する機械学習文献の最近の進歩は、洗練されたが不透明なツールの多くを生み出した。
我々は、ポストホックな特徴重要度法を用いて、モデルの予測に影響を及ぼす特徴を特定する。
論文 参考訳(メタデータ) (2022-06-16T17:59:05Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
医用画像AIの堅牢性とデータ効率を向上させるための統一表現学習戦略であるREMEDISを提案する。
様々な医療画像タスクを研究し, 振り返りデータを用いて3つの現実的な応用シナリオをシミュレートする。
論文 参考訳(メタデータ) (2022-05-19T17:34:18Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z) - Learning Predictive and Interpretable Timeseries Summaries from ICU Data [33.787187660310444]
本研究では,ヒトが予測的かつ容易に理解できる臨床時系列の要約を学習するための新しい手法を提案する。
学習した要約は従来の解釈可能なモデルクラスより優れており、病院内死亡率分類タスクにおける最先端のディープラーニングモデルに匹敵する性能を実現している。
論文 参考訳(メタデータ) (2021-09-22T21:14:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。