ALPEC: A Comprehensive Evaluation Framework and Dataset for Machine Learning-Based Arousal Detection in Clinical Practice
- URL: http://arxiv.org/abs/2409.13367v1
- Date: Fri, 20 Sep 2024 10:03:37 GMT
- Title: ALPEC: A Comprehensive Evaluation Framework and Dataset for Machine Learning-Based Arousal Detection in Clinical Practice
- Authors: Stefan Kraft, Andreas Theissler, Vera Wienhausen-Wilke, Philipp Walter, Gjergji Kasneci,
- Abstract summary: This paper introduces a novel post-processing and evaluation framework emphasizing approximate localization and precise event count (ALPEC) of arousals.
We release the dataset alongside this paper, demonstrating the benefits of leveraging multimodal data for arousal onset detection.
- Score: 8.530898223158843
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Detecting arousals in sleep is essential for diagnosing sleep disorders. However, using Machine Learning (ML) in clinical practice is impeded by fundamental issues, primarily due to mismatches between clinical protocols and ML methods. Clinicians typically annotate only the onset of arousals, while ML methods rely on annotations for both the beginning and end. Additionally, there is no standardized evaluation methodology tailored to clinical needs for arousal detection models. This work addresses these issues by introducing a novel post-processing and evaluation framework emphasizing approximate localization and precise event count (ALPEC) of arousals. We recommend that ML practitioners focus on detecting arousal onsets, aligning with clinical practice. We examine the impact of this shift on current training and evaluation schemes, addressing simplifications and challenges. We utilize a novel comprehensive polysomnographic dataset (CPS) that reflects the aforementioned clinical annotation constraints and includes modalities not present in existing polysomnographic datasets. We release the dataset alongside this paper, demonstrating the benefits of leveraging multimodal data for arousal onset detection. Our findings significantly contribute to integrating ML-based arousal detection in clinical settings, reducing the gap between technological advancements and clinical needs.
Related papers
- How Deep is your Guess? A Fresh Perspective on Deep Learning for Medical Time-Series Imputation [6.547981908229007]
We introduce a novel classification framework for time-series imputation using deep learning.
By identifying conceptual gaps in the literature and existing reviews, we devise a taxonomy grounded on the inductive bias of neural imputation frameworks.
arXiv Detail & Related papers (2024-07-11T12:33:28Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
This research introduces a novel multimodal method for classifying skin lesions, integrating smartphone-captured images with essential clinical and demographic information.
A distinctive aspect of this method is the integration of an auxiliary task focused on super-resolution image prediction.
The experimental evaluations have been conducted using the PAD-UFES20 dataset, applying various deep-learning architectures.
arXiv Detail & Related papers (2024-02-16T05:16:20Z) - Assertion Detection Large Language Model In-context Learning LoRA
Fine-tuning [2.401755243180179]
We introduce a novel methodology that utilizes Large Language Models (LLMs) pre-trained on a vast array of medical data for assertion detection.
Our approach achieved an F-1 of 0.74, which is 0.31 higher than the previous method.
arXiv Detail & Related papers (2024-01-31T05:11:00Z) - Multimodal Pretraining of Medical Time Series and Notes [45.89025874396911]
Deep learning models show promise in extracting meaningful patterns, but they require extensive labeled data.
We propose a novel approach employing self-supervised pretraining, focusing on the alignment of clinical measurements and notes.
In downstream tasks, including in-hospital mortality prediction and phenotyping, our model outperforms baselines in settings where only a fraction of the data is labeled.
arXiv Detail & Related papers (2023-12-11T21:53:40Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
Deep learning models have shown promise for automatically segmenting MS lesions, but the scarcity of accurately annotated data hinders progress in this area.
We introduce a Decoupled Hard Label Correction (DHLC) strategy that considers the imbalanced distribution and fuzzy boundaries of MS lesions.
We also introduce a Centrally Enhanced Label Correction (CELC) strategy, which leverages the aggregated central model as a correction teacher for all sites.
arXiv Detail & Related papers (2023-08-31T00:36:10Z) - KIDS: kinematics-based (in)activity detection and segmentation in a
sleep case study [5.707737640557724]
Sleep behaviour and in-bed movements contain rich information on the neurophysiological health of people.
This paper proposes an online Bayesian probabilistic framework for objective (in)activity detection and segmentation based on clinically meaningful joint kinematics.
arXiv Detail & Related papers (2023-01-04T16:24:01Z) - Detecting Shortcut Learning for Fair Medical AI using Shortcut Testing [62.9062883851246]
Machine learning holds great promise for improving healthcare, but it is critical to ensure that its use will not propagate or amplify health disparities.
One potential driver of algorithmic unfairness, shortcut learning, arises when ML models base predictions on improper correlations in the training data.
Using multi-task learning, we propose the first method to assess and mitigate shortcut learning as a part of the fairness assessment of clinical ML systems.
arXiv Detail & Related papers (2022-07-21T09:35:38Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
Estimating personalized effects of treatments is a complex, yet pervasive problem.
Recent developments in the machine learning literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools.
We use post-hoc feature importance methods to identify features that influence the model's predictions.
arXiv Detail & Related papers (2022-06-16T17:59:05Z) - Federated Cycling (FedCy): Semi-supervised Federated Learning of
Surgical Phases [57.90226879210227]
FedCy is a semi-supervised learning (FSSL) method that combines FL and self-supervised learning to exploit a decentralized dataset of both labeled and unlabeled videos.
We demonstrate significant performance gains over state-of-the-art FSSL methods on the task of automatic recognition of surgical phases.
arXiv Detail & Related papers (2022-03-14T17:44:53Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.