A Deep Learning Approach for Pixel-level Material Classification via Hyperspectral Imaging
- URL: http://arxiv.org/abs/2409.13498v1
- Date: Fri, 20 Sep 2024 13:38:48 GMT
- Title: A Deep Learning Approach for Pixel-level Material Classification via Hyperspectral Imaging
- Authors: Savvas Sifnaios, George Arvanitakis, Fotios K. Konstantinidis, Georgios Tsimiklis, Angelos Amditis, Panayiotis Frangos,
- Abstract summary: Hyperspectral (HS) imaging offers advantages over conventional technologies such as X-ray fluorescence and Raman spectroscopy.
This study evaluates the potential of combining HS imaging with deep learning for material characterization.
The model achieved 99.94% classification accuracy, demonstrating robustness in color, size, and shape invariance, and effectively handling material overlap.
- Score: 1.294249882472766
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent advancements in computer vision, particularly in detection, segmentation, and classification, have significantly impacted various domains. However, these advancements are tied to RGB-based systems, which are insufficient for applications in industries like waste sorting, pharmaceuticals, and defense, where advanced object characterization beyond shape or color is necessary. Hyperspectral (HS) imaging, capturing both spectral and spatial information, addresses these limitations and offers advantages over conventional technologies such as X-ray fluorescence and Raman spectroscopy, particularly in terms of speed, cost, and safety. This study evaluates the potential of combining HS imaging with deep learning for material characterization. The research involves: i) designing an experimental setup with HS camera, conveyor, and controlled lighting; ii) generating a multi-object dataset of various plastics (HDPE, PET, PP, PS) with semi-automated mask generation and Raman spectroscopy-based labeling; and iii) developing a deep learning model trained on HS images for pixel-level material classification. The model achieved 99.94\% classification accuracy, demonstrating robustness in color, size, and shape invariance, and effectively handling material overlap. Limitations, such as challenges with black objects, are also discussed. Extending computer vision beyond RGB to HS imaging proves feasible, overcoming major limitations of traditional methods and showing strong potential for future applications.
Related papers
- Hyperspectral Dataset and Deep Learning methods for Waste from Electric and Electronic Equipment Identification (WEEE) [0.0]
We evaluate the performance of diverse deep learning architectures for hyperspectral image segmentation.
Results show that incorporating spatial information alongside spectral data leads to improved segmentation results.
We contribute to the field by cleaning and publicly releasing the Tecnalia WEEE Hyperspectral dataset.
arXiv Detail & Related papers (2024-07-05T13:45:11Z) - Remote Bio-Sensing: Open Source Benchmark Framework for Fair Evaluation
of rPPG [2.82697733014759]
r (pg photoplethysmography) is a technology that measures and analyzes BVP (Blood Volume Pulse) by using the light absorption characteristics of hemoglobin captured through a camera.
This study is to provide a framework to evaluate various r benchmarking techniques across a wide range of datasets for fair evaluation and comparison.
arXiv Detail & Related papers (2023-07-24T09:35:47Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Hyperspectral Image Segmentation: A Preliminary Study on the Oral and
Dental Spectral Image Database (ODSI-DB) [3.1993890965689666]
Hyperspectral imaging (HSI) is a promising technology providing rich spectral information.
Recent development of snapshot HSI cameras has made real-time clinical HSI a distinct possibility.
Our work highlights the relative importance of spectral resolution, spectral range, and spatial information to both guide the development of HSI cameras and inform future clinical HSI applications.
arXiv Detail & Related papers (2023-03-14T21:57:11Z) - Deep Learning for Event-based Vision: A Comprehensive Survey and Benchmarks [55.81577205593956]
Event cameras are bio-inspired sensors that capture the per-pixel intensity changes asynchronously.
Deep learning (DL) has been brought to this emerging field and inspired active research endeavors in mining its potential.
arXiv Detail & Related papers (2023-02-17T14:19:28Z) - Probabilistic Deep Metric Learning for Hyperspectral Image
Classification [91.5747859691553]
This paper proposes a probabilistic deep metric learning framework for hyperspectral image classification.
It aims to predict the category of each pixel for an image captured by hyperspectral sensors.
Our framework can be readily applied to existing hyperspectral image classification methods.
arXiv Detail & Related papers (2022-11-15T17:57:12Z) - Remote Sensing Image Classification using Transfer Learning and
Attention Based Deep Neural Network [59.86658316440461]
We propose a deep learning based framework for RSISC, which makes use of the transfer learning technique and multihead attention scheme.
The proposed deep learning framework is evaluated on the benchmark NWPU-RESISC45 dataset and achieves the best classification accuracy of 94.7%.
arXiv Detail & Related papers (2022-06-20T10:05:38Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
Optoacoustic (OA) imaging is based on excitation of biological tissues with nanosecond-duration laser pulses followed by detection of ultrasound waves generated via light-absorption-mediated thermoelastic expansion.
OA imaging features a powerful combination between rich optical contrast and high resolution in deep tissues.
No standardized datasets generated with different types of experimental set-up and associated processing methods are available to facilitate advances in broader applications of OA in clinical settings.
arXiv Detail & Related papers (2022-06-17T08:11:26Z) - Learnable Reconstruction Methods from RGB Images to Hyperspectral
Imaging: A Survey [27.235897806207706]
Many alternative spectral imaging methods have been proposed by directly reconstructing the hyperspectral information from lower-cost, more available RGB images.
We present a thorough investigation of these state-of-the-art spectral reconstruction methods from the widespread RGB images.
Most of the data-driven deep learning methods are superior to prior-based methods in terms of reconstruction accuracy and quality despite lower speeds.
arXiv Detail & Related papers (2021-06-30T09:52:41Z) - Advances in Deep Learning for Hyperspectral Image Analysis--Addressing
Challenges Arising in Practical Imaging Scenarios [7.41157183358269]
We will review advances in the community that leverage deep learning for robust hyperspectral image analysis.
challenges include limited ground truth and high dimensional nature of the data.
Specifically, we will review unsupervised, semi-supervised and active learning approaches to image analysis.
arXiv Detail & Related papers (2020-07-16T19:51:02Z) - Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral
Imagery [79.69449412334188]
In this paper, we investigate how to adapt state-of-the-art residual learning based single gray/RGB image super-resolution approaches.
We introduce a spatial-spectral prior network (SSPN) to fully exploit the spatial information and the correlation between the spectra of the hyperspectral data.
Experimental results on some hyperspectral images demonstrate that the proposed SSPSR method enhances the details of the recovered high-resolution hyperspectral images.
arXiv Detail & Related papers (2020-05-18T14:25:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.