論文の概要: Deep Learning and Machine Learning, Advancing Big Data Analytics and Management: Tensorflow Pretrained Models
- arxiv url: http://arxiv.org/abs/2409.13566v1
- Date: Fri, 20 Sep 2024 15:07:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 06:30:58.063941
- Title: Deep Learning and Machine Learning, Advancing Big Data Analytics and Management: Tensorflow Pretrained Models
- Title(参考訳): ディープラーニングと機械学習、ビッグデータ分析と管理の強化:テンソルフロー事前学習モデル
- Authors: Keyu Chen, Ziqian Bi, Qian Niu, Junyu Liu, Benji Peng, Sen Zhang, Ming Liu, Ming Li, Xuanhe Pan, Jiawei Xu, Jinlang Wang, Pohsun Feng,
- Abstract要約: この本では、ResNet、MobileNet、EfficientNetといったモダンアーキテクチャの実践的な実装を取り上げている。
線形探索とモデル微調整を比較し、PCA、t-SNE、UMAPといった技術を用いた可視化を提供する。
この本は、理論的な洞察と実践を融合することで、読者に様々な深層学習課題に自信を持って取り組む知識を与える。
- 参考スコア(独自算出の注目度): 17.372501468675303
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This book focuses on the application of TensorFlow pre-trained models in deep learning, providing detailed guidance on effectively using these models for tasks such as image classification and object detection. It covers practical implementations of modern architectures like ResNet, MobileNet, and EfficientNet, demonstrating the power of transfer learning through real-world examples and experiments. The book compares linear probing and model fine-tuning, offering visualizations using techniques such as PCA, t-SNE, and UMAP to help readers intuitively understand the impact of different approaches. Designed for beginners to advanced users, this book includes complete example code and step-by-step instructions, enabling readers to quickly master how to leverage pre-trained models to improve performance in practical scenarios. By blending theoretical insights with hands-on practice, this book equips readers with the knowledge to confidently tackle various deep learning challenges.
- Abstract(参考訳): 本書は、ディープラーニングにおけるTensorFlow事前学習モデルの応用に焦点を当て、画像分類やオブジェクト検出などのタスクにこれらのモデルを効果的に使用するための詳細なガイダンスを提供する。
ResNet、MobileNet、EfficientNetといったモダンアーキテクチャの実践的な実装をカバーし、実世界の実例や実験を通じてトランスファーラーニングのパワーを実証している。
この本は線形探索とモデル微調整を比較し、PCA、t-SNE、UMAPといった技術を使って、読者が異なるアプローチの影響を直感的に理解できるように視覚化する。
初心者向けに設計された本書には、完全なサンプルコードとステップ・バイ・ステップの指示が含まれており、読者は事前学習されたモデルを利用して、実践的なシナリオにおけるパフォーマンスを改善する方法を素早く習得することができる。
この本は、理論的な洞察と実践を融合することにより、読者に様々な深層学習課題に自信を持って取り組む知識を与える。
関連論文リスト
- Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
その驚くべき振る舞いをより深く理解するために、トレーニングされたニューラルネットワークの単純かつ正確なモデルの有用性について検討する。
3つのケーススタディで、様々な顕著な現象に関する新しい経験的洞察を導き出すためにどのように適用できるかを説明します。
論文 参考訳(メタデータ) (2024-10-31T22:54:34Z) - Deep Learning and Machine Learning, Advancing Big Data Analytics and Management: Handy Appetizer [16.957968437298124]
本では、ビッグデータ分析と管理の進歩を促進する上で、人工知能(AI)、機械学習(ML)、ディープラーニング(DL)の役割について論じている。
ニューラルネットワークと、畳み込みニューラルネットワーク(CNN)のような技術がどのように機能するかを理解するのに役立つ、直感的な視覚化と実践的なケーススタディを提供する。
論文 参考訳(メタデータ) (2024-09-25T17:31:45Z) - InFiConD: Interactive No-code Fine-tuning with Concept-based Knowledge Distillation [18.793275018467163]
本稿では,知識蒸留プロセスの実装に視覚的概念を活用する新しいフレームワークであるInFiConDを提案する。
本研究では,概念コーパスからテキストに沿った視覚概念を抽出し,新しい知識蒸留パイプラインを構築する。
InFiConDのインタフェースは、ユーザインタフェース内で概念の影響を直接操作することで、対話的に学生モデルを微調整することができる。
論文 参考訳(メタデータ) (2024-06-25T16:56:45Z) - PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [71.63186089279218]
本稿では,PILOTとして知られるモデルベース連続学習ツールボックスについて紹介する。
一方、PILOTはL2P、DualPrompt、CODA-Promptといった事前学習モデルに基づいて、最先端のクラスインクリメンタル学習アルゴリズムを実装している。
一方、PILOTは、事前学習されたモデルの文脈に典型的なクラス増分学習アルゴリズムを適合させ、それらの効果を評価する。
論文 参考訳(メタデータ) (2023-09-13T17:55:11Z) - GPT4Image: Can Large Pre-trained Models Help Vision Models on Perception
Tasks? [51.22096780511165]
本稿では,大規模な事前学習モデルから抽出した知識を利用して,CNN や ViT などのモデルが拡張表現を学習するのを支援する新しい学習パラダイムを提案する。
我々は、詳細な記述を事前訓練されたエンコーダに入力し、画像の内容をエンコードするリッチなセマンティック情報でテキスト埋め込みを抽出する。
論文 参考訳(メタデータ) (2023-06-01T14:02:45Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Learning by Distillation: A Self-Supervised Learning Framework for
Optical Flow Estimation [71.76008290101214]
DistillFlowは光の流れを学ぶための知識蒸留手法である。
KITTIとSintelの両方のデータセット上で、最先端の教師なし学習性能を実現する。
我々のモデルは、KITTI 2015ベンチマークにおけるすべての単分子的手法の中で、第1位にランクされ、Sintel Finalベンチマークで発表されたすべてのメソッドよりも優れています。
論文 参考訳(メタデータ) (2021-06-08T09:13:34Z) - Revisiting Meta-Learning as Supervised Learning [69.2067288158133]
メタラーニングと従来の教師付き学習の関連性を再考し,強化することで,原則的,統一的なフレームワークの提供を目指す。
タスク固有のデータセットとターゲットモデルを(機能、ラベル)サンプルとして扱うことで、多くのメタ学習アルゴリズムを教師付き学習のインスタンスに還元することができる。
この視点は、メタラーニングを直感的で実践的なフレームワークに統一するだけでなく、教師付き学習から直接洞察を伝達してメタラーニングを改善することができる。
論文 参考訳(メタデータ) (2020-02-03T06:13:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。