Scalable Multi-agent Reinforcement Learning for Factory-wide Dynamic Scheduling
- URL: http://arxiv.org/abs/2409.13571v1
- Date: Fri, 20 Sep 2024 15:16:37 GMT
- Title: Scalable Multi-agent Reinforcement Learning for Factory-wide Dynamic Scheduling
- Authors: Jaeyeon Jang, Diego Klabjan, Han Liu, Nital S. Patel, Xiuqi Li, Balakrishnan Ananthanarayanan, Husam Dauod, Tzung-Han Juang,
- Abstract summary: This paper applies a leader-follower multi-agent RL (MARL) concept to obtain desired coordination.
We propose a rule-based conversion algorithm to prevent catastrophic loss of production capacity due to an agent's error.
Overall, the proposed MARL-based scheduling model presents a promising solution to the real-time scheduling problem.
- Score: 14.947820507112136
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-time dynamic scheduling is a crucial but notoriously challenging task in modern manufacturing processes due to its high decision complexity. Recently, reinforcement learning (RL) has been gaining attention as an impactful technique to handle this challenge. However, classical RL methods typically rely on human-made dispatching rules, which are not suitable for large-scale factory-wide scheduling. To bridge this gap, this paper applies a leader-follower multi-agent RL (MARL) concept to obtain desired coordination after decomposing the scheduling problem into a set of sub-problems that are handled by each individual agent for scalability. We further strengthen the procedure by proposing a rule-based conversion algorithm to prevent catastrophic loss of production capacity due to an agent's error. Our experimental results demonstrate that the proposed model outperforms the state-of-the-art deep RL-based scheduling models in various aspects. Additionally, the proposed model provides the most robust scheduling performance to demand changes. Overall, the proposed MARL-based scheduling model presents a promising solution to the real-time scheduling problem, with potential applications in various manufacturing industries.
Related papers
- Optimizing Job Shop Scheduling in the Furniture Industry: A Reinforcement Learning Approach Considering Machine Setup, Batch Variability, and Intralogistics [0.0]
This paper explores the potential application of Deep Reinforcement Learning in the furniture industry.
A concept for a model is proposed that provides a higher level of information detail to enhance scheduling accuracy and efficiency.
The model extends traditional approaches to JSSPs by including job volumes, buffer management, transportation times, and machine setup times.
arXiv Detail & Related papers (2024-09-18T09:12:40Z) - Joint Demonstration and Preference Learning Improves Policy Alignment with Human Feedback [58.049113055986375]
We develop a single stage approach named Alignment with Integrated Human Feedback (AIHF) to train reward models and the policy.
The proposed approach admits a suite of efficient algorithms, which can easily reduce to, and leverage, popular alignment algorithms.
We demonstrate the efficiency of the proposed solutions with extensive experiments involving alignment problems in LLMs and robotic control problems in MuJoCo.
arXiv Detail & Related papers (2024-06-11T01:20:53Z) - Learning-enabled Flexible Job-shop Scheduling for Scalable Smart
Manufacturing [11.509669981978874]
In smart manufacturing systems, flexible job-shop scheduling with transportation constraints is essential to optimize solutions for maximizing productivity.
Recent developments in deep reinforcement learning (DRL)-based methods for FJSPT have encountered a scale generalization challenge.
We introduce a novel graph-based DRL method, named the Heterogeneous Graph Scheduler (HGS)
arXiv Detail & Related papers (2024-02-14T06:49:23Z) - Solving the flexible job-shop scheduling problem through an enhanced
deep reinforcement learning approach [1.565361244756411]
This paper introduces a new DRL method for solving the flexible job-shop scheduling problem, particularly for large instances.
The approach is based on the use of heterogeneous graph neural networks to a more informative graph representation of the problem.
arXiv Detail & Related papers (2023-10-24T10:35:08Z) - Flexible Job Shop Scheduling via Dual Attention Network Based
Reinforcement Learning [73.19312285906891]
In flexible job shop scheduling problem (FJSP), operations can be processed on multiple machines, leading to intricate relationships between operations and machines.
Recent works have employed deep reinforcement learning (DRL) to learn priority dispatching rules (PDRs) for solving FJSP.
This paper presents a novel end-to-end learning framework that weds the merits of self-attention models for deep feature extraction and DRL for scalable decision-making.
arXiv Detail & Related papers (2023-05-09T01:35:48Z) - A Hierarchical Temporal Planning-Based Approach for Dynamic Hoist
Scheduling Problems [11.66506213335498]
Hoist scheduling has become a bottleneck in electroplating industry applications with the development of autonomous devices.
We formulate the hoist scheduling problem as a new temporal planning problem in the form of adapted PDDL.
We provide a collection of real-life benchmark instances that can be used to evaluate solution methods for the problem.
arXiv Detail & Related papers (2022-12-11T05:30:44Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - Reinforcement Learning as One Big Sequence Modeling Problem [84.84564880157149]
Reinforcement learning (RL) is typically concerned with estimating single-step policies or single-step models.
We view RL as a sequence modeling problem, with the goal being to predict a sequence of actions that leads to a sequence of high rewards.
arXiv Detail & Related papers (2021-06-03T17:58:51Z) - Towards Standardizing Reinforcement Learning Approaches for Stochastic
Production Scheduling [77.34726150561087]
reinforcement learning can be used to solve scheduling problems.
Existing studies rely on (sometimes) complex simulations for which the code is unavailable.
There is a vast array of RL designs to choose from.
standardization of model descriptions - both production setup and RL design - and validation scheme are a prerequisite.
arXiv Detail & Related papers (2021-04-16T16:07:10Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.