An Expectation-Maximization Algorithm-based Autoregressive Model for the Fuzzy Job Shop Scheduling Problem
- URL: http://arxiv.org/abs/2502.00018v1
- Date: Sat, 11 Jan 2025 10:20:16 GMT
- Title: An Expectation-Maximization Algorithm-based Autoregressive Model for the Fuzzy Job Shop Scheduling Problem
- Authors: Yijian Wang, Tongxian Guo, Zhaoqiang Liu,
- Abstract summary: The fuzzy job shop scheduling problem (FJSSP) emerges as an innovative extension to the job shop scheduling problem (JSSP)
This paper investigates the feasibility of employing neural networks to assimilate and process fuzzy information for the resolution of FJSSP.
- Score: 12.862865254507177
- License:
- Abstract: The fuzzy job shop scheduling problem (FJSSP) emerges as an innovative extension to the job shop scheduling problem (JSSP), incorporating a layer of uncertainty that aligns the problem more closely with the complexities of real-world manufacturing environments. This improvement increases the computational complexity of deriving the solution while improving its applicability. In the domain of deterministic scheduling, neural combinatorial optimization (NCO) has recently demonstrated remarkable efficacy. However, its application to the realm of fuzzy scheduling has been relatively unexplored. This paper aims to bridge this gap by investigating the feasibility of employing neural networks to assimilate and process fuzzy information for the resolution of FJSSP, thereby leveraging the advancements in NCO to enhance fuzzy scheduling methodologies. To achieve this, we approach the FJSSP as a generative task and introduce an expectation-maximization algorithm-based autoregressive model (EMARM) to address it. During training, our model alternates between generating scheduling schemes from given instances (E-step) and adjusting the autoregressive model weights based on these generated schemes (M-step). This novel methodology effectively navigates around the substantial hurdle of obtaining ground-truth labels, which is a prevalent issue in NCO frameworks. In testing, the experimental results demonstrate the superior capability of EMARM in addressing the FJSSP, showcasing its effectiveness and potential for practical applications in fuzzy scheduling.
Related papers
- Neural Combinatorial Optimization for Stochastic Flexible Job Shop Scheduling Problems [5.10888539576355]
We propose a novel attention-based scenario processing module (SPM) to extend NCO methods for solving scenarios.
Our approach explicitly incorporates approximation information by an attention mechanism that captures the embedding of sampled scenarios.
Results demonstrate that our approach outperforms existing learning and non-learning methods for the flexible problem.
arXiv Detail & Related papers (2024-12-18T17:05:33Z) - Dependency-Aware CAV Task Scheduling via Diffusion-Based Reinforcement Learning [12.504232513881828]
We propose a novel dependency-aware task scheduling strategy for dynamic unmanned aerial vehicle-assisted connected autonomous vehicles (CAVs)
We formulate a joint scheduling priority and subtask assignment optimization problem with the objective of minimizing the average task completion time.
We propose a diffusion-based reinforcement learning algorithm, named Synthetic DDQN based Subtasks Scheduling, which can make adaptive task scheduling decision in real time.
arXiv Detail & Related papers (2024-11-27T11:07:31Z) - Distributed Multi-Objective Dynamic Offloading Scheduling for Air-Ground Cooperative MEC [13.71241401034042]
This paper proposes a distributed trajectory planning and offloading scheduling scheme, integrated with MORL and the kernel method.
Numerical results reveal that the n-step return can benefit the proposed kernel-based approach, achieving significant improvement in the long-term average backlog performance.
arXiv Detail & Related papers (2024-03-16T13:50:31Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
Large Language Models (LLMs) have shown promise as intelligent agents in interactive decision-making tasks.
We introduce Entropy-Regularized Token-level Policy Optimization (ETPO), an entropy-augmented RL method tailored for optimizing LLMs at the token level.
We assess the effectiveness of ETPO within a simulated environment that models data science code generation as a series of multi-step interactive tasks.
arXiv Detail & Related papers (2024-02-09T07:45:26Z) - Let's reward step by step: Step-Level reward model as the Navigators for
Reasoning [64.27898739929734]
Process-Supervised Reward Model (PRM) furnishes LLMs with step-by-step feedback during the training phase.
We propose a greedy search algorithm that employs the step-level feedback from PRM to optimize the reasoning pathways explored by LLMs.
To explore the versatility of our approach, we develop a novel method to automatically generate step-level reward dataset for coding tasks and observed similar improved performance in the code generation tasks.
arXiv Detail & Related papers (2023-10-16T05:21:50Z) - Amortizing intractable inference in large language models [56.92471123778389]
We use amortized Bayesian inference to sample from intractable posterior distributions.
We empirically demonstrate that this distribution-matching paradigm of LLM fine-tuning can serve as an effective alternative to maximum-likelihood training.
As an important application, we interpret chain-of-thought reasoning as a latent variable modeling problem.
arXiv Detail & Related papers (2023-10-06T16:36:08Z) - Federated Conditional Stochastic Optimization [110.513884892319]
Conditional optimization has found in a wide range of machine learning tasks, such as in-variant learning tasks, AUPRC, andAML.
This paper proposes algorithms for distributed federated learning.
arXiv Detail & Related papers (2023-10-04T01:47:37Z) - Split-Boost Neural Networks [1.1549572298362787]
We propose an innovative training strategy for feed-forward architectures - called split-boost.
Such a novel approach ultimately allows us to avoid explicitly modeling the regularization term.
The proposed strategy is tested on a real-world (anonymized) dataset within a benchmark medical insurance design problem.
arXiv Detail & Related papers (2023-09-06T17:08:57Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
We introduce UnRolled Federated learning (SURF), a method that expands algorithm unrolling to federated learning.
Our proposed method tackles two challenges of this expansion, namely the need to feed whole datasets to the unrolleds and the decentralized nature of federated learning.
arXiv Detail & Related papers (2023-05-24T17:26:22Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.