Adaptive Deviation Learning for Visual Anomaly Detection with Data Contamination
- URL: http://arxiv.org/abs/2411.09558v1
- Date: Thu, 14 Nov 2024 16:10:15 GMT
- Title: Adaptive Deviation Learning for Visual Anomaly Detection with Data Contamination
- Authors: Anindya Sundar Das, Guansong Pang, Monowar Bhuyan,
- Abstract summary: We introduce a systematic adaptive method that employs deviation learning to compute anomaly scores end-to-end.
Our proposed method surpasses competing techniques and exhibits both stability and robustness in the presence of data contamination.
- Score: 20.4008901760593
- License:
- Abstract: Visual anomaly detection targets to detect images that notably differ from normal pattern, and it has found extensive application in identifying defective parts within the manufacturing industry. These anomaly detection paradigms predominantly focus on training detection models using only clean, unlabeled normal samples, assuming an absence of contamination; a condition often unmet in real-world scenarios. The performance of these methods significantly depends on the quality of the data and usually decreases when exposed to noise. We introduce a systematic adaptive method that employs deviation learning to compute anomaly scores end-to-end while addressing data contamination by assigning relative importance to the weights of individual instances. In this approach, the anomaly scores for normal instances are designed to approximate scalar scores obtained from the known prior distribution. Meanwhile, anomaly scores for anomaly examples are adjusted to exhibit statistically significant deviations from these reference scores. Our approach incorporates a constrained optimization problem within the deviation learning framework to update instance weights, resolving this problem for each mini-batch. Comprehensive experiments on the MVTec and VisA benchmark datasets indicate that our proposed method surpasses competing techniques and exhibits both stability and robustness in the presence of data contamination.
Related papers
- Fine-grained Abnormality Prompt Learning for Zero-shot Anomaly Detection [88.34095233600719]
FAPrompt is a novel framework designed to learn Fine-grained Abnormality Prompts for more accurate ZSAD.
It substantially outperforms state-of-the-art methods by at least 3%-5% AUC/AP in both image- and pixel-level ZSAD tasks.
arXiv Detail & Related papers (2024-10-14T08:41:31Z) - MeLIAD: Interpretable Few-Shot Anomaly Detection with Metric Learning and Entropy-based Scoring [2.394081903745099]
We propose MeLIAD, a novel methodology for interpretable anomaly detection.
MeLIAD is based on metric learning and achieves interpretability by design without relying on any prior distribution assumptions of true anomalies.
Experiments on five public benchmark datasets, including quantitative and qualitative evaluation of interpretability, demonstrate that MeLIAD achieves improved anomaly detection and localization performance.
arXiv Detail & Related papers (2024-09-20T16:01:43Z) - Anomaly Detection by Context Contrasting [57.695202846009714]
Anomaly detection focuses on identifying samples that deviate from the norm.
Recent advances in self-supervised learning have shown great promise in this regard.
We propose Con$$, which learns through context augmentations.
arXiv Detail & Related papers (2024-05-29T07:59:06Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
This work proposes a novel method for generating generic Video-temporal PAs by inpainting a masked out region of an image.
In addition, we present a simple unified framework to detect real-world anomalies under the OCC setting.
Our method performs on par with other existing state-of-the-art PAs generation and reconstruction based methods under the OCC setting.
arXiv Detail & Related papers (2023-11-27T13:14:06Z) - An Iterative Method for Unsupervised Robust Anomaly Detection Under Data
Contamination [24.74938110451834]
Most deep anomaly detection models are based on learning normality from datasets.
In practice, the normality assumption is often violated due to the nature of real data distributions.
We propose a learning framework to reduce this gap and achieve better normality representation.
arXiv Detail & Related papers (2023-09-18T02:36:19Z) - Few-shot Anomaly Detection in Text with Deviation Learning [13.957106119614213]
We introduce FATE, a framework that learns anomaly scores explicitly in an end-to-end method using deviation learning.
Our model is optimized to learn the distinct behavior of anomalies by utilizing a multi-head self-attention layer and multiple instance learning approaches.
arXiv Detail & Related papers (2023-08-22T20:40:21Z) - Augment to Detect Anomalies with Continuous Labelling [10.646747658653785]
Anomaly detection is to recognize samples that differ in some respect from the training observations.
Recent state-of-the-art deep learning-based anomaly detection methods suffer from high computational cost, complexity, unstable training procedures, and non-trivial implementation.
We leverage a simple learning procedure that trains a lightweight convolutional neural network, reaching state-of-the-art performance in anomaly detection.
arXiv Detail & Related papers (2022-07-03T20:11:51Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
We introduce a novel weakly-supervised anomaly detection framework to train detection models.
The proposed approach learns discriminative normality by leveraging the labeled anomalies and a prior probability.
Our model is substantially more sample-efficient and robust, and performs significantly better than state-of-the-art competing methods in both closed-set and open-set settings.
arXiv Detail & Related papers (2021-08-01T14:33:17Z) - Toward Deep Supervised Anomaly Detection: Reinforcement Learning from
Partially Labeled Anomaly Data [150.9270911031327]
We consider the problem of anomaly detection with a small set of partially labeled anomaly examples and a large-scale unlabeled dataset.
Existing related methods either exclusively fit the limited anomaly examples that typically do not span the entire set of anomalies, or proceed with unsupervised learning from the unlabeled data.
We propose here instead a deep reinforcement learning-based approach that enables an end-to-end optimization of the detection of both labeled and unlabeled anomalies.
arXiv Detail & Related papers (2020-09-15T03:05:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.