Few-shot Anomaly Detection in Text with Deviation Learning
- URL: http://arxiv.org/abs/2308.11780v1
- Date: Tue, 22 Aug 2023 20:40:21 GMT
- Title: Few-shot Anomaly Detection in Text with Deviation Learning
- Authors: Anindya Sundar Das, Aravind Ajay, Sriparna Saha and Monowar Bhuyan
- Abstract summary: We introduce FATE, a framework that learns anomaly scores explicitly in an end-to-end method using deviation learning.
Our model is optimized to learn the distinct behavior of anomalies by utilizing a multi-head self-attention layer and multiple instance learning approaches.
- Score: 13.957106119614213
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Most current methods for detecting anomalies in text concentrate on
constructing models solely relying on unlabeled data. These models operate on
the presumption that no labeled anomalous examples are available, which
prevents them from utilizing prior knowledge of anomalies that are typically
present in small numbers in many real-world applications. Furthermore, these
models prioritize learning feature embeddings rather than optimizing anomaly
scores directly, which could lead to suboptimal anomaly scoring and inefficient
use of data during the learning process. In this paper, we introduce FATE, a
deep few-shot learning-based framework that leverages limited anomaly examples
and learns anomaly scores explicitly in an end-to-end method using deviation
learning. In this approach, the anomaly scores of normal examples are adjusted
to closely resemble reference scores obtained from a prior distribution.
Conversely, anomaly samples are forced to have anomalous scores that
considerably deviate from the reference score in the upper tail of the prior.
Additionally, our model is optimized to learn the distinct behavior of
anomalies by utilizing a multi-head self-attention layer and multiple instance
learning approaches. Comprehensive experiments on several benchmark datasets
demonstrate that our proposed approach attains a new level of state-of-the-art
performance.
Related papers
- Adaptive Deviation Learning for Visual Anomaly Detection with Data Contamination [20.4008901760593]
We introduce a systematic adaptive method that employs deviation learning to compute anomaly scores end-to-end.
Our proposed method surpasses competing techniques and exhibits both stability and robustness in the presence of data contamination.
arXiv Detail & Related papers (2024-11-14T16:10:15Z) - MeLIAD: Interpretable Few-Shot Anomaly Detection with Metric Learning and Entropy-based Scoring [2.394081903745099]
We propose MeLIAD, a novel methodology for interpretable anomaly detection.
MeLIAD is based on metric learning and achieves interpretability by design without relying on any prior distribution assumptions of true anomalies.
Experiments on five public benchmark datasets, including quantitative and qualitative evaluation of interpretability, demonstrate that MeLIAD achieves improved anomaly detection and localization performance.
arXiv Detail & Related papers (2024-09-20T16:01:43Z) - Anomaly Detection by Context Contrasting [57.695202846009714]
Anomaly detection focuses on identifying samples that deviate from the norm.
Recent advances in self-supervised learning have shown great promise in this regard.
We propose Con$$, which learns through context augmentations.
arXiv Detail & Related papers (2024-05-29T07:59:06Z) - Catching Both Gray and Black Swans: Open-set Supervised Anomaly
Detection [90.32910087103744]
A few labeled anomaly examples are often available in many real-world applications.
These anomaly examples provide valuable knowledge about the application-specific abnormality.
Those anomalies seen during training often do not illustrate every possible class of anomaly.
This paper tackles open-set supervised anomaly detection.
arXiv Detail & Related papers (2022-03-28T05:21:37Z) - Few-shot Deep Representation Learning based on Information Bottleneck
Principle [0.0]
In a standard anomaly detection problem, a detection model is trained in an unsupervised setting, under an assumption that the samples were generated from a single source of normal data.
In practice, normal data often consist of multiple classes. In such settings, learning to differentiate between normal instances and anomalies among discrepancies between normal classes without large-scale labeled data presents a significant challenge.
In this work, we attempt to overcome this challenge by preparing few examples from each normal class, which is not excessively costly.
arXiv Detail & Related papers (2021-11-25T07:15:12Z) - SLA$^2$P: Self-supervised Anomaly Detection with Adversarial
Perturbation [77.71161225100927]
Anomaly detection is a fundamental yet challenging problem in machine learning.
We propose a novel and powerful framework, dubbed as SLA$2$P, for unsupervised anomaly detection.
arXiv Detail & Related papers (2021-11-25T03:53:43Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
We introduce a novel weakly-supervised anomaly detection framework to train detection models.
The proposed approach learns discriminative normality by leveraging the labeled anomalies and a prior probability.
Our model is substantially more sample-efficient and robust, and performs significantly better than state-of-the-art competing methods in both closed-set and open-set settings.
arXiv Detail & Related papers (2021-08-01T14:33:17Z) - Toward Deep Supervised Anomaly Detection: Reinforcement Learning from
Partially Labeled Anomaly Data [150.9270911031327]
We consider the problem of anomaly detection with a small set of partially labeled anomaly examples and a large-scale unlabeled dataset.
Existing related methods either exclusively fit the limited anomaly examples that typically do not span the entire set of anomalies, or proceed with unsupervised learning from the unlabeled data.
We propose here instead a deep reinforcement learning-based approach that enables an end-to-end optimization of the detection of both labeled and unlabeled anomalies.
arXiv Detail & Related papers (2020-09-15T03:05:39Z) - Deep Weakly-supervised Anomaly Detection [118.55172352231381]
Pairwise Relation prediction Network (PReNet) learns pairwise relation features and anomaly scores.
PReNet can detect any seen/unseen abnormalities that fit the learned pairwise abnormal patterns.
Empirical results on 12 real-world datasets show that PReNet significantly outperforms nine competing methods in detecting seen and unseen anomalies.
arXiv Detail & Related papers (2019-10-30T00:40:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.