Improved Unet brain tumor image segmentation based on GSConv module and ECA attention mechanism
- URL: http://arxiv.org/abs/2409.13626v1
- Date: Fri, 20 Sep 2024 16:35:19 GMT
- Title: Improved Unet brain tumor image segmentation based on GSConv module and ECA attention mechanism
- Authors: Qiyuan Tian, Zhuoyue Wang, Xiaoling Cui,
- Abstract summary: An improved model of medical image segmentation for brain tumor is discussed, which is a deep learning algorithm based on U-Net architecture.
Based on the traditional U-Net, we introduce GSConv module and ECA attention mechanism to improve the performance of the model in medical image segmentation tasks.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An improved model of medical image segmentation for brain tumor is discussed, which is a deep learning algorithm based on U-Net architecture. Based on the traditional U-Net, we introduce GSConv module and ECA attention mechanism to improve the performance of the model in medical image segmentation tasks. With these improvements, the new U-Net model is able to extract and utilize multi-scale features more efficiently while flexibly focusing on important channels, resulting in significantly improved segmentation results. During the experiment, the improved U-Net model is trained and evaluated systematically. By looking at the loss curves of the training set and the test set, we find that the loss values of both rapidly decline to the lowest point after the eighth epoch, and then gradually converge and stabilize. This shows that our model has good learning ability and generalization ability. In addition, by monitoring the change in the mean intersection ratio (mIoU), we can see that after the 35th epoch, the mIoU gradually approaches 0.8 and remains stable, which further validates the model. Compared with the traditional U-Net, the improved version based on GSConv module and ECA attention mechanism shows obvious advantages in segmentation effect. Especially in the processing of brain tumor image edges, the improved model can provide more accurate segmentation results. This achievement not only improves the accuracy of medical image analysis, but also provides more reliable technical support for clinical diagnosis.
Related papers
- Improved Unet model for brain tumor image segmentation based on ASPP-coordinate attention mechanism [9.496880456126709]
We propose an improved Unet model for brain tumor image segmentation.
It combines coordinate attention mechanism and ASPP module to improve the segmentation effect.
Compared to the traditional Unet, the enhanced model offers superior segmentation and edge accuracy.
arXiv Detail & Related papers (2024-09-13T07:08:48Z) - CU-Net: a U-Net architecture for efficient brain-tumor segmentation on BraTS 2019 dataset [0.0]
This study introduces a new implementation of the Columbia-University-Net architecture for brain tumor segmentation using the BraTS 2019 dataset.
The CU-Net model has a symmetrical U-shaped structure and uses convolutional layers, max pooling, and upsampling operations to achieve high-resolution segmentation.
arXiv Detail & Related papers (2024-06-19T00:01:01Z) - Optimizing Universal Lesion Segmentation: State Space Model-Guided Hierarchical Networks with Feature Importance Adjustment [0.0]
We introduce Mamba-Ahnet, a novel integration of State Space Model (SSM) and Advanced Hierarchical Network (AHNet) within the MAMBA framework.
Mamba-Ahnet combines SSM's feature extraction and comprehension with AHNet's attention mechanisms and image reconstruction, aiming to enhance segmentation accuracy and robustness.
arXiv Detail & Related papers (2024-04-26T08:15:43Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - 3D Medical Image Segmentation based on multi-scale MPU-Net [5.393743755706745]
This paper proposes a tumor segmentation model MPU-Net for patient volume CT images.
It is inspired by Transformer with a global attention mechanism.
Compared with the benchmark model U-Net, MPU-Net shows excellent segmentation results.
arXiv Detail & Related papers (2023-07-11T20:46:19Z) - ARHNet: Adaptive Region Harmonization for Lesion-aware Augmentation to
Improve Segmentation Performance [61.04246102067351]
We propose a foreground harmonization framework (ARHNet) to tackle intensity disparities and make synthetic images look more realistic.
We demonstrate the efficacy of our method in improving the segmentation performance using real and synthetic images.
arXiv Detail & Related papers (2023-07-02T10:39:29Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Performance or Trust? Why Not Both. Deep AUC Maximization with
Self-Supervised Learning for COVID-19 Chest X-ray Classifications [72.52228843498193]
In training deep learning models, a compromise often must be made between performance and trust.
In this work, we integrate a new surrogate loss with self-supervised learning for computer-aided screening of COVID-19 patients.
arXiv Detail & Related papers (2021-12-14T21:16:52Z) - RCA-IUnet: A residual cross-spatial attention guided inception U-Net
model for tumor segmentation in breast ultrasound imaging [0.6091702876917281]
The article introduces an efficient residual cross-spatial attention guided inception U-Net (RCA-IUnet) model with minimal training parameters for tumor segmentation.
The RCA-IUnet model follows U-Net topology with residual inception depth-wise separable convolution and hybrid pooling layers.
Cross-spatial attention filters are added to suppress the irrelevant features and focus on the target structure.
arXiv Detail & Related papers (2021-08-05T10:35:06Z) - On the Robustness of Pretraining and Self-Supervision for a Deep
Learning-based Analysis of Diabetic Retinopathy [70.71457102672545]
We compare the impact of different training procedures for diabetic retinopathy grading.
We investigate different aspects such as quantitative performance, statistics of the learned feature representations, interpretability and robustness to image distortions.
Our results indicate that models from ImageNet pretraining report a significant increase in performance, generalization and robustness to image distortions.
arXiv Detail & Related papers (2021-06-25T08:32:45Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.