A Generative Framework for Predictive Modeling of Multiple Chronic Conditions Using Graph Variational Autoencoder and Bandit-Optimized Graph Neural Network
- URL: http://arxiv.org/abs/2409.13671v1
- Date: Fri, 20 Sep 2024 17:26:38 GMT
- Title: A Generative Framework for Predictive Modeling of Multiple Chronic Conditions Using Graph Variational Autoencoder and Bandit-Optimized Graph Neural Network
- Authors: Julian Carvajal Rico, Adel Alaeddini, Syed Hasib Akhter Faruqui, Susan P Fisher-Hoch, Joseph B Mccormick,
- Abstract summary: Predicting the emergence of multiple chronic conditions (MCC) is crucial for early intervention and personalized healthcare.
Graph neural networks (GNNs) are effective methods for modeling complex graph data, such as those found in MCC.
We propose a novel generative framework for GNNs that constructs a representative underlying graph structure by utilizing the distribution of the data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predicting the emergence of multiple chronic conditions (MCC) is crucial for early intervention and personalized healthcare, as MCC significantly impacts patient outcomes and healthcare costs. Graph neural networks (GNNs) are effective methods for modeling complex graph data, such as those found in MCC. However, a significant challenge with GNNs is their reliance on an existing graph structure, which is not readily available for MCC. To address this challenge, we propose a novel generative framework for GNNs that constructs a representative underlying graph structure by utilizing the distribution of the data to enhance predictive analytics for MCC. Our framework employs a graph variational autoencoder (GVAE) to capture the complex relationships in patient data. This allows for a comprehensive understanding of individual health trajectories and facilitates the creation of diverse patient stochastic similarity graphs while preserving the original feature set. These variations of patient stochastic similarity graphs, generated from the GVAE decoder, are then processed by a GNN using a novel Laplacian regularization technique to refine the graph structure over time and improves the prediction accuracy of MCC. A contextual Bandit is designed to evaluate the stochastically generated graphs and identify the best-performing graph for the GNN model iteratively until model convergence. We validate the performance of the proposed contextual Bandit algorithm against $\varepsilon$-Greedy and multi-armed Bandit algorithms on a large cohort (n = 1,592) of patients with MCC. These advancements highlight the potential of the proposed approach to transform predictive healthcare analytics, enabling a more personalized and proactive approach to MCC management.
Related papers
- Explainable Spatio-Temporal GCNNs for Irregular Multivariate Time Series: Architecture and Application to ICU Patient Data [7.433698348783128]
We present XST-CNN (eXG-Temporal Graph Conal Neural Network), a novel architecture for processing heterogeneous and irregular Multi Time Series (MTS) data.
Our approach captures temporal and feature within a unifiedtemporal-temporal pipeline by leveraging a GCNN pipeline.
We evaluate XST-CNN using real-world Electronic Health Record data to predict Multidrug Resistance (MDR) in ICU patients.
arXiv Detail & Related papers (2024-11-01T22:53:17Z) - AdaMedGraph: Adaboosting Graph Neural Networks for Personalized Medicine [31.424781716926848]
We propose a novel algorithm named ours, which can automatically select important features to construct multiple patient similarity graphs.
ours is evaluated on two real-world medical scenarios and shows superiors performance.
arXiv Detail & Related papers (2023-11-24T06:27:25Z) - Self-supervision meets kernel graph neural models: From architecture to
augmentations [36.388069423383286]
We improve the design and learning of kernel graph neural networks (KGNNs)
We develop a novel structure-preserving graph data augmentation method called latent graph augmentation (LGA)
Our proposed model achieves competitive performance comparable to or sometimes outperforming state-of-the-art graph representation learning frameworks.
arXiv Detail & Related papers (2023-10-17T14:04:22Z) - Graph data modelling for outcome prediction in oropharyngeal cancer
patients [38.37247384790338]
Graph neural networks (GNNs) are becoming increasingly popular in the medical domain for the tasks of disease classification and outcome prediction.
We propose a patient hypergraph network (PHGN) which has been investigated in an inductive learning setup for binary outcome prediction in oropharyngeal cancer (OPC) patients.
arXiv Detail & Related papers (2023-10-04T16:09:35Z) - MaxCorrMGNN: A Multi-Graph Neural Network Framework for Generalized
Multimodal Fusion of Medical Data for Outcome Prediction [3.2889220522843625]
We develop an innovative fusion approach called MaxCorr MGNN that models non-linear modality correlations within and across patients.
We then design, for the first time, a generalized multi-layered graph neural network (MGNN) for task-informed reasoning in multi-layered graphs.
We evaluate our model an outcome prediction task on a Tuberculosis dataset consistently outperforming several state-of-the-art neural, graph-based and traditional fusion techniques.
arXiv Detail & Related papers (2023-07-13T23:52:41Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - Dynamic Graph Enhanced Contrastive Learning for Chest X-ray Report
Generation [92.73584302508907]
We propose a knowledge graph with Dynamic structure and nodes to facilitate medical report generation with Contrastive Learning.
In detail, the fundamental structure of our graph is pre-constructed from general knowledge.
Each image feature is integrated with its very own updated graph before being fed into the decoder module for report generation.
arXiv Detail & Related papers (2023-03-18T03:53:43Z) - Graph Condensation via Receptive Field Distribution Matching [61.71711656856704]
This paper focuses on creating a small graph to represent the original graph, so that GNNs trained on the size-reduced graph can make accurate predictions.
We view the original graph as a distribution of receptive fields and aim to synthesize a small graph whose receptive fields share a similar distribution.
arXiv Detail & Related papers (2022-06-28T02:10:05Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
Comorbid diseases co-occur and progress via complex temporal patterns that vary among individuals.
In electronic health records we can observe the different diseases a patient has, but can only infer the temporal relationship between each co-morbid condition.
We develop deep diffusion processes to model "dynamic comorbidity networks"
arXiv Detail & Related papers (2020-01-08T15:47:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.