Graph data modelling for outcome prediction in oropharyngeal cancer
patients
- URL: http://arxiv.org/abs/2310.02931v1
- Date: Wed, 4 Oct 2023 16:09:35 GMT
- Title: Graph data modelling for outcome prediction in oropharyngeal cancer
patients
- Authors: Nithya Bhasker, Stefan Leger, Alexander Zwanenburg, Chethan Babu
Reddy, Sebastian Bodenstedt, Steffen L\"ock, Stefanie Speidel
- Abstract summary: Graph neural networks (GNNs) are becoming increasingly popular in the medical domain for the tasks of disease classification and outcome prediction.
We propose a patient hypergraph network (PHGN) which has been investigated in an inductive learning setup for binary outcome prediction in oropharyngeal cancer (OPC) patients.
- Score: 38.37247384790338
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Graph neural networks (GNNs) are becoming increasingly popular in the medical
domain for the tasks of disease classification and outcome prediction. Since
patient data is not readily available as a graph, most existing methods either
manually define a patient graph, or learn a latent graph based on pairwise
similarities between the patients. There are also hypergraph neural network
(HGNN)-based methods that were introduced recently to exploit potential higher
order associations between the patients by representing them as a hypergraph.
In this work, we propose a patient hypergraph network (PHGN), which has been
investigated in an inductive learning setup for binary outcome prediction in
oropharyngeal cancer (OPC) patients using computed tomography (CT)-based
radiomic features for the first time. Additionally, the proposed model was
extended to perform time-to-event analyses, and compared with GNN and baseline
linear models.
Related papers
- A Generative Framework for Predictive Modeling of Multiple Chronic Conditions Using Graph Variational Autoencoder and Bandit-Optimized Graph Neural Network [0.0]
Predicting the emergence of multiple chronic conditions (MCC) is crucial for early intervention and personalized healthcare.
Graph neural networks (GNNs) are effective methods for modeling complex graph data, such as those found in MCC.
We propose a novel generative framework for GNNs that constructs a representative underlying graph structure by utilizing the distribution of the data.
arXiv Detail & Related papers (2024-09-20T17:26:38Z) - AdaMedGraph: Adaboosting Graph Neural Networks for Personalized Medicine [31.424781716926848]
We propose a novel algorithm named ours, which can automatically select important features to construct multiple patient similarity graphs.
ours is evaluated on two real-world medical scenarios and shows superiors performance.
arXiv Detail & Related papers (2023-11-24T06:27:25Z) - Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling
Model [64.29487107585665]
Graph representation learning techniques on brain functional networks can facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
Here, we propose an interpretable hierarchical signed graph representation learning model to extract graph-level representations from brain functional networks.
In order to further improve the model performance, we also propose a new strategy to augment functional brain network data for contrastive learning.
arXiv Detail & Related papers (2022-07-14T20:03:52Z) - Graph-in-Graph (GiG): Learning interpretable latent graphs in
non-Euclidean domain for biological and healthcare applications [52.65389473899139]
Graphs are a powerful tool for representing and analyzing unstructured, non-Euclidean data ubiquitous in the healthcare domain.
Recent works have shown that considering relationships between input data samples have a positive regularizing effect for the downstream task.
We propose Graph-in-Graph (GiG), a neural network architecture for protein classification and brain imaging applications.
arXiv Detail & Related papers (2022-04-01T10:01:37Z) - Heterogeneous Similarity Graph Neural Network on Electronic Health
Records [74.66674469510251]
We propose Heterogeneous Similarity Graph Neural Network (HSGNN) to analyze EHRs with a novel heterogeneous GNN.
Our framework consists of two parts: one is a preprocessing method and the other is an end-to-end GNN.
The GNN takes all homogeneous graphs as input and fuses all of them into one graph to make a prediction.
arXiv Detail & Related papers (2021-01-17T23:14:29Z) - Predicting Patient Outcomes with Graph Representation Learning [0.47248250311484113]
We propose to exploit diagnoses as temporal information by connecting similar patients in a graph.
We demonstrate that LSTM-GNNs outperform the LSTM-only baseline on length of stay prediction tasks on the eICU database.
arXiv Detail & Related papers (2021-01-11T15:04:07Z) - Deep Learning with Heterogeneous Graph Embeddings for Mortality
Prediction from Electronic Health Records [2.2859570135269625]
We train a Heterogeneous Graph Model (HGM) on Electronic Health Record data and use the resulting embedding vector as additional information added to a Conal Neural Network (CNN) model for predicting in-hospital mortality.
We find that adding HGM to a CNN model increases the mortality prediction accuracy up to 4%.
arXiv Detail & Related papers (2020-12-28T02:27:09Z) - Latent-Graph Learning for Disease Prediction [44.26665239213658]
We show that it is possible to learn a single, optimal graph towards the GCN's downstream task of disease classification.
Unlike commonly employed spectral GCN approaches, our GCN is spatial and inductive, and can thus infer previously unseen patients as well.
arXiv Detail & Related papers (2020-03-27T08:18:01Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
This study explores the use of Continuous Glucose Monitoring (CGM) data as input for digital decision support tools.
We investigate how Recurrent Neural Networks (RNNs) can be used for Short Term Blood Glucose (STBG) prediction.
arXiv Detail & Related papers (2020-02-06T16:39:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.