論文の概要: A Bottom-Up Approach to Class-Agnostic Image Segmentation
- arxiv url: http://arxiv.org/abs/2409.13687v1
- Date: Fri, 20 Sep 2024 17:56:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 05:57:35.294927
- Title: A Bottom-Up Approach to Class-Agnostic Image Segmentation
- Title(参考訳): クラス非依存画像セグメンテーションにおけるボトムアップアプローチ
- Authors: Sebastian Dille, Ari Blondal, Sylvain Paris, Yağız Aksoy,
- Abstract要約: 本稿では,クラスに依存しないセグメンテーション問題に対処するためのボトムアップの新たな定式化を提案する。
我々は、その特徴空間の射影球に直接ネットワークを監督する。
ボトムアップの定式化は、クラスベースのセグメンテーション用に設計されたデータセットで訓練された場合でも、例外的な一般化能力を示す。
- 参考スコア(独自算出の注目度): 4.086366531569003
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Class-agnostic image segmentation is a crucial component in automating image editing workflows, especially in contexts where object selection traditionally involves interactive tools. Existing methods in the literature often adhere to top-down formulations, following the paradigm of class-based approaches, where object detection precedes per-object segmentation. In this work, we present a novel bottom-up formulation for addressing the class-agnostic segmentation problem. We supervise our network directly on the projective sphere of its feature space, employing losses inspired by metric learning literature as well as losses defined in a novel segmentation-space representation. The segmentation results are obtained through a straightforward mean-shift clustering of the estimated features. Our bottom-up formulation exhibits exceptional generalization capability, even when trained on datasets designed for class-based segmentation. We further showcase the effectiveness of our generic approach by addressing the challenging task of cell and nucleus segmentation. We believe that our bottom-up formulation will offer valuable insights into diverse segmentation challenges in the literature.
- Abstract(参考訳): クラスに依存しないイメージセグメンテーションは、画像編集ワークフローの自動化において重要なコンポーネントである。
文献における既存の手法は、オブジェクト検出がオブジェクトごとのセグメンテーションに先行するクラスベースのアプローチのパラダイムに従って、トップダウンの定式化に固執することが多い。
本研究では,クラスに依存しないセグメンテーション問題に対処するためのボトムアップの新たな定式化を提案する。
特徴空間の射影球面に直接ネットワークを監督し、計量学習文学に触発された損失と、新しいセグメンテーション空間表現で定義された損失を生かした。
セグメンテーションの結果は、推定された特徴の簡単な平均シフトクラスタリングによって得られる。
ボトムアップの定式化は、クラスベースのセグメンテーション用に設計されたデータセットで訓練された場合でも、例外的な一般化能力を示す。
さらに,細胞分裂と核分裂の課題に対処することで,我々のジェネリックアプローチの有効性を示す。
ボトムアップの定式化によって、文献における多様なセグメンテーションの課題に関する貴重な洞察が得られると信じています。
関連論文リスト
- Visual Prompt Selection for In-Context Learning Segmentation [77.15684360470152]
本稿では,サンプル選択戦略の再考と改善に焦点をあてる。
まず、ICLに基づくセグメンテーションモデルが異なる文脈に敏感であることを示す。
さらに、経験的証拠は、文脈的プロンプトの多様性がセグメンテーションを導く上で重要な役割を担っていることを示している。
論文 参考訳(メタデータ) (2024-07-14T15:02:54Z) - Weakly-Supervised Cross-Domain Segmentation of Electron Microscopy with Sparse Point Annotation [1.124958340749622]
カウント,検出,セグメンテーションタスク間の相関を利用したマルチタスク学習フレームワークを提案する。
ラベル拡張のためのクロスポジションカット・アンド・ペーストを開発し,エントロピーに基づく擬似ラベル選択を行う。
提案手法は, UDA法を著しく上回り, 教師付き手法と同等の性能を発揮する。
論文 参考訳(メタデータ) (2024-03-31T12:22:23Z) - From Text Segmentation to Smart Chaptering: A Novel Benchmark for
Structuring Video Transcriptions [63.11097464396147]
音声コンテンツに焦点をあてた新しいベンチマークYTSegを導入し、その内容は本質的に非構造的であり、トポロジと構造的にも多様である。
また,高効率な階層分割モデルMiniSegを導入する。
論文 参考訳(メタデータ) (2024-02-27T15:59:37Z) - Open-world Semantic Segmentation via Contrasting and Clustering
Vision-Language Embedding [95.78002228538841]
本研究では,様々なオープンワールドカテゴリのセマンティックオブジェクトを高密度アノテーションを使わずにセマンティックオブジェクトのセマンティックオブジェクトのセマンティック化を学習するための,新しいオープンワールドセマンティックセマンティックセマンティックセマンティクスパイプラインを提案する。
提案手法は任意のカテゴリのオブジェクトを直接分割し、3つのベンチマークデータセット上でデータラベリングを必要とするゼロショットセグメンテーション法より優れている。
論文 参考訳(メタデータ) (2022-07-18T09:20:04Z) - Deep Spectral Methods: A Surprisingly Strong Baseline for Unsupervised
Semantic Segmentation and Localization [98.46318529630109]
画像分解をグラフ分割問題として再フレーミングすることで,従来のスペクトル分割法から着想を得た。
これらの固有ベクトルはすでにイメージを意味のあるセグメントに分解しており、シーン内のオブジェクトのローカライズに容易に利用できる。
データセットにまたがるこれらのセグメントに関連する機能をクラスタ化することで、明確に定義された、名前付き可能なリージョンを得ることができる。
論文 参考訳(メタデータ) (2022-05-16T17:47:44Z) - Weakly-Supervised Semantic Segmentation via Sub-category Exploration [73.03956876752868]
我々は、オブジェクトの他の部分に注意を払うために、ネットワークを強制する単純で効果的なアプローチを提案する。
具体的には、画像の特徴をクラスタリングして、アノテーション付き親クラスごとに擬似サブカテゴリラベルを生成する。
提案手法の有効性を検証し,提案手法が最先端手法に対して良好に機能することを示す。
論文 参考訳(メタデータ) (2020-08-03T20:48:31Z) - GMNet: Graph Matching Network for Large Scale Part Semantic Segmentation
in the Wild [23.29789882934198]
課題に対処するために,より高いオブジェクトレベルのコンテキスト条件と部分レベルの空間関係を組み合わせたフレームワークを提案する。
オブジェクトレベルの曖昧性に取り組むために、クラスレベルのセマンティクスを保持するためにクラスコンディショニングモジュールが導入される。
また,地中真実と予測部分との相対空間関係のマッチングを目的とした,新しい隣接グラフベースモジュールを提案する。
論文 参考訳(メタデータ) (2020-07-17T15:53:40Z) - Part-aware Prototype Network for Few-shot Semantic Segmentation [50.581647306020095]
本稿では,プロトタイプ表現に基づく新規な数ショットセマンティックセマンティックセマンティクスフレームワークを提案する。
私たちのキーとなるアイデアは、全体論的なクラス表現を、部分認識型プロトタイプのセットに分解することです。
提案する部分認識型プロトタイプを生成・拡張する新しいグラフニューラルネットワークモデルを開発した。
論文 参考訳(メタデータ) (2020-07-13T11:03:09Z) - Unsupervised Domain Adaptation in Semantic Segmentation: a Review [22.366638308792734]
本研究の目的は, セマンティックセグメンテーションのための深層ネットワークのUnsupervised Domain Adaptation (UDA) の最近の進歩について概説することである。
論文 参考訳(メタデータ) (2020-05-21T20:10:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。