Declarative Integration and Management of Large Language Models through Finite Automata: Application to Automation, Communication, and Ethics
- URL: http://arxiv.org/abs/2409.13693v1
- Date: Mon, 2 Sep 2024 11:50:52 GMT
- Title: Declarative Integration and Management of Large Language Models through Finite Automata: Application to Automation, Communication, and Ethics
- Authors: Thierry Petit, Arnault Pachot, Claire Conan-Vrinat, Alexandre Dubarry,
- Abstract summary: This article introduces an innovative architecture designed to.
describe the most appropriate Large Language Models (LLMs) with shared histories, and triggers to identify the most appropriate.
LLMs for a given task.
- Score: 41.94295877935867
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This article introduces an innovative architecture designed to declaratively combine Large Language Models (LLMs) with shared histories, and triggers to identify the most appropriate LLM for a given task. Our approach is general and declarative, relying on the construction of finite automata coupled with an event management system. The developed tool is crafted to facilitate the efficient and complex integration of LLMs with minimal programming effort, especially, but not only, for integrating methods of positive psychology to AI. The flexibility of our technique is demonstrated through applied examples in automation, communication, and ethics.
Related papers
- AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML [56.565200973244146]
Automated machine learning (AutoML) accelerates AI development by automating tasks in the development pipeline.
Recent works have started exploiting large language models (LLM) to lessen such burden.
This paper proposes AutoML-Agent, a novel multi-agent framework tailored for full-pipeline AutoML.
arXiv Detail & Related papers (2024-10-03T20:01:09Z) - Control Industrial Automation System with Large Language Models [2.2369578015657954]
This paper introduces a framework for integrating large language models with industrial automation systems.
At the core of the framework are an agent system designed for industrial tasks, a structured prompting method, and an event-driven information modeling mechanism.
Our contribution includes a formal system design, proof-of-concept implementation, and a method for generating task-specific datasets.
arXiv Detail & Related papers (2024-09-26T16:19:37Z) - Position: A Call to Action for a Human-Centered AutoML Paradigm [83.78883610871867]
Automated machine learning (AutoML) was formed around the fundamental objectives of automatically and efficiently configuring machine learning (ML)
We argue that a key to unlocking AutoML's full potential lies in addressing the currently underexplored aspect of user interaction with AutoML systems.
arXiv Detail & Related papers (2024-06-05T15:05:24Z) - MTLLM: LLMs are Meaning-Typed Code Constructs [7.749453456370407]
This paper presents a simplified approach to integrating large language models (LLMs) into programming.
Our approach utilizes the semantic richness in existing programs to automatically translate between the traditional programming languages and the natural language.
We present a fully functional and production-grade implementation for our approach and compare it to SOTA LLM software development tools.
arXiv Detail & Related papers (2024-05-14T21:12:01Z) - Synergy of Large Language Model and Model Driven Engineering for Automated Development of Centralized Vehicular Systems [2.887732304499794]
We present a prototype of a tool leveraging the synergy of model driven engineering (MDE) and Large Language Models (LLM)
The generated code is evaluated in a simulated environment using CARLA simulator connected to an example centralized vehicle architecture, in an emergency brake scenario.
arXiv Detail & Related papers (2024-04-08T13:28:11Z) - Leveraging Large Language Models to Build and Execute Computational
Workflows [40.572754656757475]
This paper explores how these emerging capabilities can be harnessed to facilitate complex scientific research.
We present initial findings from our attempt to integrate Phyloflow with OpenAI's function-calling API, and outline a strategy for developing a comprehensive workflow management system.
arXiv Detail & Related papers (2023-12-12T20:17:13Z) - TaskBench: Benchmarking Large Language Models for Task Automation [82.2932794189585]
We introduce TaskBench, a framework to evaluate the capability of large language models (LLMs) in task automation.
Specifically, task decomposition, tool selection, and parameter prediction are assessed.
Our approach combines automated construction with rigorous human verification, ensuring high consistency with human evaluation.
arXiv Detail & Related papers (2023-11-30T18:02:44Z) - Recommender AI Agent: Integrating Large Language Models for Interactive
Recommendations [53.76682562935373]
We introduce an efficient framework called textbfInteRecAgent, which employs LLMs as the brain and recommender models as tools.
InteRecAgent achieves satisfying performance as a conversational recommender system, outperforming general-purpose LLMs.
arXiv Detail & Related papers (2023-08-31T07:36:44Z) - ChatEDA: A Large Language Model Powered Autonomous Agent for EDA [6.858976599086164]
This research paper introduces ChatEDA, an autonomous agent for EDA empowered by an LLM, AutoMage, and EDA tools serving as executors.
ChatEDA streamlines the design flow from the Register-Transfer Level (RTL) to the Graphic Data System Version II (GDSII) by effectively managing task decomposition, script generation, and task execution.
arXiv Detail & Related papers (2023-08-20T08:32:13Z) - AutoML-GPT: Automatic Machine Learning with GPT [74.30699827690596]
We propose developing task-oriented prompts and automatically utilizing large language models (LLMs) to automate the training pipeline.
We present the AutoML-GPT, which employs GPT as the bridge to diverse AI models and dynamically trains models with optimized hyper parameters.
This approach achieves remarkable results in computer vision, natural language processing, and other challenging areas.
arXiv Detail & Related papers (2023-05-04T02:09:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.