Leveraging Large Language Models to Build and Execute Computational
Workflows
- URL: http://arxiv.org/abs/2312.07711v1
- Date: Tue, 12 Dec 2023 20:17:13 GMT
- Title: Leveraging Large Language Models to Build and Execute Computational
Workflows
- Authors: Alejandro Duque, Abdullah Syed, Kastan V. Day, Matthew J. Berry,
Daniel S. Katz, Volodymyr V. Kindratenko
- Abstract summary: This paper explores how these emerging capabilities can be harnessed to facilitate complex scientific research.
We present initial findings from our attempt to integrate Phyloflow with OpenAI's function-calling API, and outline a strategy for developing a comprehensive workflow management system.
- Score: 40.572754656757475
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The recent development of large language models (LLMs) with multi-billion
parameters, coupled with the creation of user-friendly application programming
interfaces (APIs), has paved the way for automatically generating and executing
code in response to straightforward human queries. This paper explores how
these emerging capabilities can be harnessed to facilitate complex scientific
workflows, eliminating the need for traditional coding methods. We present
initial findings from our attempt to integrate Phyloflow with OpenAI's
function-calling API, and outline a strategy for developing a comprehensive
workflow management system based on these concepts.
Related papers
- LoCoML: A Framework for Real-World ML Inference Pipelines [0.0]
LoCoML is a low-code framework designed to simplify the integration of diverse machine learning models.
We show that LoCoML adds only a small amount of computational load, making it efficient and effective for large-scale ML integration.
arXiv Detail & Related papers (2025-01-24T01:35:08Z) - Large Action Models: From Inception to Implementation [51.81485642442344]
Large Action Models (LAMs) are designed for action generation and execution within dynamic environments.
LAMs hold the potential to transform AI from passive language understanding to active task completion.
We present a comprehensive framework for developing LAMs, offering a systematic approach to their creation, from inception to deployment.
arXiv Detail & Related papers (2024-12-13T11:19:56Z) - From Words to Workflows: Automating Business Processes [0.2796197251957245]
The limitations of Robotic Process Automation (RPA) have become apparent.
Recent advancements in Artificial Intelligence (AI) have paved the way for Intelligent Automation (IA)
This paper introduces Text2Workflow, a novel method that automatically generates from natural language user requests.
arXiv Detail & Related papers (2024-12-04T16:34:35Z) - GUI Agents with Foundation Models: A Comprehensive Survey [91.97447457550703]
This survey consolidates recent research on (M)LLM-based GUI agents.
We identify key challenges and propose future research directions.
We hope this survey will inspire further advancements in the field of (M)LLM-based GUI agents.
arXiv Detail & Related papers (2024-11-07T17:28:10Z) - AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML [56.565200973244146]
Automated machine learning (AutoML) accelerates AI development by automating tasks in the development pipeline.
Recent works have started exploiting large language models (LLM) to lessen such burden.
This paper proposes AutoML-Agent, a novel multi-agent framework tailored for full-pipeline AutoML.
arXiv Detail & Related papers (2024-10-03T20:01:09Z) - ComfyGen: Prompt-Adaptive Workflows for Text-to-Image Generation [87.39861573270173]
We introduce the novel task of prompt-adaptive workflow generation, where the goal is to automatically tailor a workflow to each user prompt.
We propose two LLM-based approaches to tackle this task: a tuning-based method that learns from user-preference data, and a training-free method that uses the LLM to select existing flows.
Our work shows that prompt-dependent flow prediction offers a new pathway to improving text-to-image generation quality, complementing existing research directions in the field.
arXiv Detail & Related papers (2024-10-02T16:43:24Z) - Meaning-Typed Programming: Language-level Abstractions and Runtime for GenAI Applications [8.308424118055981]
Software is rapidly evolving from logical code to neuro-integrated applications that leverage generative AI and large language models (LLMs) for application functionality.
This paper proposes meaning-typed programming (MTP), a novel approach to simplify the creation of neuro-integrated applications.
arXiv Detail & Related papers (2024-05-14T21:12:01Z) - Enhancing API Documentation through BERTopic Modeling and Summarization [0.0]
This paper focuses on the complexities of interpreting Application Programming Interface (API) documentation.
Official API documentation serves as a primary source of information for developers, but it can often be extensive and lacks user-friendliness.
Our novel approach employs the strengths of BERTopic for topic modeling and Natural Language Processing (NLP) to automatically generate summaries of API documentation.
arXiv Detail & Related papers (2023-08-17T15:57:12Z) - A Composable Just-In-Time Programming Framework with LLMs and FBP [0.0]
This paper introduces a computing framework that combines Flow-Based Programming (FBP) and Large Language Models (LLMs) to enable Just-In-Time Programming (JITP)
JITP empowers users, regardless of their programming expertise, to actively participate in the development and automation process by leveraging their task-time algorithmic insights.
The framework allows users to request and generate code in real-time, enabling dynamic code execution within a flow-based program.
arXiv Detail & Related papers (2023-07-31T23:51:46Z) - OpenAGI: When LLM Meets Domain Experts [51.86179657467822]
Human Intelligence (HI) excels at combining basic skills to solve complex tasks.
This capability is vital for Artificial Intelligence (AI) and should be embedded in comprehensive AI Agents.
We introduce OpenAGI, an open-source platform designed for solving multi-step, real-world tasks.
arXiv Detail & Related papers (2023-04-10T03:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.