論文の概要: DiVA-DocRE: A Discriminative and Voice-Aware Paradigm for Document-Level Relation Extraction
- arxiv url: http://arxiv.org/abs/2409.13717v1
- Date: Sat, 7 Sep 2024 18:47:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 05:46:28.408288
- Title: DiVA-DocRE: A Discriminative and Voice-Aware Paradigm for Document-Level Relation Extraction
- Title(参考訳): DiVA-DocRE:文書レベル関係抽出のための識別・音声認識パラダイム
- Authors: Yiheng Wu, Roman Yangarber, Xian Mao,
- Abstract要約: 識別・音声認識パラダイム DiVA を導入する。
私たちの革新はDocREを差別的なタスクに変換することです。
Re-DocREDおよびDocREDデータセットの実験では、DocRTEタスクの最先端の結果が示されている。
- 参考スコア(独自算出の注目度): 0.3208888890455612
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The remarkable capabilities of Large Language Models (LLMs) in text comprehension and generation have revolutionized Information Extraction (IE). One such advancement is in Document-level Relation Triplet Extraction (DocRTE), a critical task in information systems that aims to extract entities and their semantic relationships from documents. However, existing methods are primarily designed for Sentence level Relation Triplet Extraction (SentRTE), which typically handles a limited set of relations and triplet facts within a single sentence. Additionally, some approaches treat relations as candidate choices integrated into prompt templates, resulting in inefficient processing and suboptimal performance when determining the relation elements in triplets. To address these limitations, we introduce a Discriminative and Voice Aware Paradigm DiVA. DiVA involves only two steps: performing document-level relation extraction (DocRE) and then identifying the subject object entities based on the relation. No additional processing is required simply input the document to directly obtain the triplets. This streamlined process more accurately reflects real-world scenarios for triplet extraction. Our innovation lies in transforming DocRE into a discriminative task, where the model pays attention to each relation and to the often overlooked issue of active vs. passive voice within the triplet. Our experiments on the Re-DocRED and DocRED datasets demonstrate state-of-the-art results for the DocRTE task.
- Abstract(参考訳): テキスト理解と生成におけるLLM(Large Language Models)の顕著な能力は、情報抽出(IE)に革命をもたらした。
ドキュメントレベルの関係トリプルト抽出(DocRTE)は、エンティティとそれらの意味的関係を文書から抽出することを目的とした情報システムにおいて重要なタスクである。
しかし、既存の手法は主に文レベルの関係トリプルト抽出(SentRTE)のために設計されている。
さらに、いくつかのアプローチでは、関係をプロンプトテンプレートに統合した候補選択として扱い、結果として、三重項の関係要素を決定する際に、非効率な処理と準最適性能をもたらす。
これらの制約に対処するために、識別・音声認識パラダイム DiVA を導入する。
DiVAは文書レベルの関係抽出(DocRE)を行い、その関係に基づいて対象のオブジェクトを識別する。
三つ子を直接取得するためには、ドキュメントを単に入力する余分な処理は必要ない。
この合理化プロセスは三重項抽出の現実のシナリオをより正確に反映している。
私たちの革新はDocREを差別的なタスクに転換することにあります。
Re-DocREDおよびDocREDデータセットの実験では、DocRTEタスクの最先端の結果が示されている。
関連論文リスト
- Unified Multi-Modal Interleaved Document Representation for Information Retrieval [57.65409208879344]
我々は、異なるモダリティでインターリーブされた文書を均等に埋め込み、より包括的でニュアンスのある文書表現を生成する。
具体的には、テキスト、画像、テーブルの処理と統合を統一されたフォーマットと表現に統合する、近年のビジョン言語モデルの能力を活用して、これを実現する。
論文 参考訳(メタデータ) (2024-10-03T17:49:09Z) - GEGA: Graph Convolutional Networks and Evidence Retrieval Guided Attention for Enhanced Document-level Relation Extraction [15.246183329778656]
ドキュメントレベルの関係抽出(DocRE)は、構造化されていない文書テキストからエンティティ間の関係を抽出することを目的としている。
これらの課題を克服するために,DocREの新しいモデルであるGEGAを提案する。
我々は、広く使用されている3つのベンチマークデータセット、DocRED、Re-DocRED、Revisit-DocREDでGEGAモデルを評価する。
論文 参考訳(メタデータ) (2024-07-31T07:15:33Z) - AutoRE: Document-Level Relation Extraction with Large Language Models [27.426703757501507]
我々は、RHF(Relation-Head-Facts)という新しいRE抽出パラダイムを採用した、エンド・ツー・エンドのDocREモデルであるAutoREを紹介する。
既存のアプローチとは異なり、AutoREは既知の関係オプションの仮定に依存しておらず、現実のシナリオをより反映している。
RE-DocREDデータセットの実験では、AutoREの最高のパフォーマンスを示し、最先端の結果が得られました。
論文 参考訳(メタデータ) (2024-03-21T23:48:21Z) - Consistency Guided Knowledge Retrieval and Denoising in LLMs for
Zero-shot Document-level Relation Triplet Extraction [43.50683283748675]
文書レベルの関係トリプルト抽出(DocRTE)は、文書から意味的関係を持つエンティティを同時に抽出することを目的とした情報システムの基本課題である。
既存の手法は、かなりの量の完全なラベル付きデータに依存している。
ChatGPTやLLaMAのような最近の先進言語モデル(LLM)は、素晴らしい長文生成能力を示している。
論文 参考訳(メタデータ) (2024-01-24T17:04:28Z) - Not Just Plain Text! Fuel Document-Level Relation Extraction with
Explicit Syntax Refinement and Subsentence Modeling [3.9436257406798925]
expLicit syntAx Refinement and Subsentence mOdeliNg based framework (LARSON)を提案する。
余分な構文情報を導入することで、LARSONは任意の粒度のサブ文をモデル化し、効果的なインストラクティブを表示できる。
3つのベンチマークデータセット(DocRED、CDR、GDA)の実験結果から、LARSONは既存の手法よりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2022-11-10T05:06:37Z) - Document-Level Relation Extraction with Sentences Importance Estimation
and Focusing [52.069206266557266]
文書レベルの関係抽出(DocRE)は、複数の文の文書から2つのエンティティ間の関係を決定することを目的としている。
我々はDocREのための文重要度スコアと文集中損失を設計するSIEF(Sentence Estimation and Focusing)フレームワークを提案する。
2つのドメインの実験結果から、SIEFは全体的なパフォーマンスを改善するだけでなく、DocREモデルをより堅牢にします。
論文 参考訳(メタデータ) (2022-04-27T03:20:07Z) - Unified Pretraining Framework for Document Understanding [52.224359498792836]
文書理解のための統合事前学習フレームワークであるUDocを紹介する。
UDocは、ほとんどのドキュメント理解タスクをサポートするように設計されており、Transformerを拡張してマルチモーダル埋め込みを入力とする。
UDocの重要な特徴は、3つの自己管理的損失を利用して汎用的な表現を学ぶことである。
論文 参考訳(メタデータ) (2022-04-22T21:47:04Z) - RelationPrompt: Leveraging Prompts to Generate Synthetic Data for
Zero-Shot Relation Triplet Extraction [65.4337085607711]
ゼロショット関係トリプルト抽出(ZeroRTE)のタスク設定について紹介する。
入力文が与えられた後、抽出された各三重項は、トレーニング段階で関係ラベルが見えないヘッドエンティティ、リレーションラベル、テールエンティティから構成される。
本稿では、言語モデルに構造化テキストを生成するよう促すことで、関係例を合成する。
論文 参考訳(メタデータ) (2022-03-17T05:55:14Z) - OneRel:Joint Entity and Relation Extraction with One Module in One Step [42.576188878294886]
統合エンティティと関係抽出は自然言語処理と知識グラフ構築において不可欠な課題である。
そこで我々は, 結合抽出を細粒度三重分類問題として用いた, OneRel という新しい結合実体と関係抽出モデルを提案する。
論文 参考訳(メタデータ) (2022-03-10T15:09:59Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
本稿では,関係抽出のための中間ステップ(SAIS)を監督し,拡張することにより,関連コンテキストやエンティティタイプをキャプチャするモデルを明示的に教えることを提案する。
そこで本提案手法は,より効果的な管理を行うため,より優れた品質の関係を抽出するだけでなく,それに対応する証拠をより正確に抽出する。
論文 参考訳(メタデータ) (2021-09-24T17:37:35Z) - Eider: Evidence-enhanced Document-level Relation Extraction [56.71004595444816]
文書レベルの関係抽出(DocRE)は、文書内のエンティティペア間の意味関係を抽出することを目的としている。
本稿では,共同関係と証拠抽出,エビデンス中心関係抽出(RE),抽出結果の融合からなる3段階のエビデンス強化DocREフレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-16T09:43:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。