論文の概要: Explainable Malware Analysis: Concepts, Approaches and Challenges
- arxiv url: http://arxiv.org/abs/2409.13723v1
- Date: Mon, 9 Sep 2024 08:19:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 05:35:28.692209
- Title: Explainable Malware Analysis: Concepts, Approaches and Challenges
- Title(参考訳): 説明可能なマルウェア分析:概念,アプローチ,課題
- Authors: Harikha Manthena, Shaghayegh Shajarian, Jeffrey Kimmell, Mahmoud Abdelsalam, Sajad Khorsandroo, Maanak Gupta,
- Abstract要約: 我々は、現在最先端のMLベースのマルウェア検出技術と、一般的なXAIアプローチについてレビューする。
本稿では,本研究の実施状況と説明可能なマルウェア解析の課題について論じる。
この理論的調査は、マルウェア検出におけるXAI応用に関心を持つ研究者のエントリポイントとなる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning (ML) has seen exponential growth in recent years, finding applications in various domains such as finance, medicine, and cybersecurity. Malware remains a significant threat to modern computing, frequently used by attackers to compromise systems. While numerous machine learning-based approaches for malware detection achieve high performance, they often lack transparency and fail to explain their predictions. This is a critical drawback in malware analysis, where understanding the rationale behind detections is essential for security analysts to verify and disseminate information. Explainable AI (XAI) addresses this issue by maintaining high accuracy while producing models that provide clear, understandable explanations for their decisions. In this survey, we comprehensively review the current state-of-the-art ML-based malware detection techniques and popular XAI approaches. Additionally, we discuss research implementations and the challenges of explainable malware analysis. This theoretical survey serves as an entry point for researchers interested in XAI applications in malware detection. By analyzing recent advancements in explainable malware analysis, we offer a broad overview of the progress in this field, positioning our work as the first to extensively cover XAI methods for malware classification and detection.
- Abstract(参考訳): 近年、機械学習(ML)は指数関数的に成長し、金融、医療、サイバーセキュリティなど様々な分野に応用されている。
マルウェアは現代のコンピューティングにとって重大な脅威であり、攻撃者がシステムに侵入するために頻繁に使用する。
マルウェア検出のための多くの機械学習ベースのアプローチは高いパフォーマンスを達成するが、透明性が欠如し、予測を説明できないことが多い。
これは、マルウェア分析において重要な欠点であり、セキュリティアナリストが情報を検証し広めるのに、検出の背後にある根拠を理解することが不可欠である。
説明可能なAI(XAI)は、意思決定に対して明確で理解可能な説明を提供するモデルを作成しながら、高い精度を維持することでこの問題に対処する。
本稿では,現在最先端のMLベースのマルウェア検出技術と,一般的なXAIアプローチについて概説する。
さらに,本研究の実施状況と,説明可能なマルウェア解析の課題についても論じる。
この理論的調査は、マルウェア検出におけるXAI応用に関心を持つ研究者のエントリポイントとなる。
近年のマルウェア分析の進歩を解析することにより、この分野での進歩を概観し、マルウェア分類と検出のためのXAI手法を広くカバーした最初の事例として位置づける。
関連論文リスト
- Computational Safety for Generative AI: A Signal Processing Perspective [65.268245109828]
計算安全性は、GenAIにおける安全性の定量的評価、定式化、研究を可能にする数学的枠組みである。
ジェイルブレイクによる悪意のあるプロンプトを検出するために, 感度解析と損失景観解析がいかに有効かを示す。
我々は、AIの安全性における信号処理の鍵となる研究課題、機会、そして重要な役割について論じる。
論文 参考訳(メタデータ) (2025-02-18T02:26:50Z) - Survey on AI-Generated Media Detection: From Non-MLLM to MLLM [51.91311158085973]
AI生成メディアを検出する方法は急速に進化してきた。
MLLMに基づく汎用検出器は、信頼性検証、説明可能性、ローカライゼーション機能を統合する。
倫理的・セキュリティ的な配慮が、重要な世界的な懸念として浮上している。
論文 参考訳(メタデータ) (2025-02-07T12:18:20Z) - Predicting Vulnerability to Malware Using Machine Learning Models: A Study on Microsoft Windows Machines [0.0]
本研究では機械学習(ML)技術を活用した効果的なマルウェア検出戦略の必要性に対処する。
本研究の目的は、個々のマシンの特定の状況に基づいて、マルウェアの脆弱性を正確に予測する高度なMLモデルを開発することである。
論文 参考訳(メタデータ) (2025-01-05T10:04:58Z) - Analyzing Adversarial Inputs in Deep Reinforcement Learning [53.3760591018817]
本稿では, 正当性検証のレンズを用いて, 逆入力の特性を包括的に解析する。
このような摂動に対する感受性に基づいてモデルを分類するために、新しい計量である逆数率(Adversarial Rate)を導入する。
本分析は, 直交入力が所定のDRLシステムの安全性にどのように影響するかを実証的に示す。
論文 参考訳(メタデータ) (2024-02-07T21:58:40Z) - Progressing from Anomaly Detection to Automated Log Labeling and
Pioneering Root Cause Analysis [53.24804865821692]
本研究では、ログ異常の分類を導入し、ラベル付けの課題を軽減するために、自動ラベリングについて検討する。
この研究は、根本原因分析が異常検出に続く未来を予見し、異常の根本原因を解明する。
論文 参考訳(メタデータ) (2023-12-22T15:04:20Z) - Adversarial attacks and defenses in explainable artificial intelligence:
A survey [11.541601343587917]
敵機械学習(AdvML)の最近の進歩は、最先端の説明手法の限界と脆弱性を強調している。
本調査は、機械学習モデルの説明に対する敵攻撃に関する総合的な研究の概要を提供する。
論文 参考訳(メタデータ) (2023-06-06T09:53:39Z) - Harnessing the Speed and Accuracy of Machine Learning to Advance Cybersecurity [0.0]
従来のシグネチャベースのマルウェア検出方法は、複雑な脅威を検出するのに制限がある。
近年、機械学習はマルウェアを効果的に検出する有望なソリューションとして出現している。
MLアルゴリズムは、大規模なデータセットを分析し、人間が識別するのが困難なパターンを特定することができる。
論文 参考訳(メタデータ) (2023-02-24T02:42:38Z) - Practical Machine Learning Safety: A Survey and Primer [81.73857913779534]
自動運転車のような安全クリティカルなアプリケーションにおける機械学習アルゴリズムのオープンワールド展開は、さまざまなML脆弱性に対処する必要がある。
一般化エラーを低減し、ドメイン適応を実現し、外乱例や敵攻撃を検出するための新しいモデルと訓練技術。
我々の組織は、MLアルゴリズムの信頼性を異なる側面から向上するために、最先端のML技術を安全戦略にマッピングする。
論文 参考訳(メタデータ) (2021-06-09T05:56:42Z) - Inspect, Understand, Overcome: A Survey of Practical Methods for AI
Safety [54.478842696269304]
安全クリティカルなアプリケーションにディープニューラルネットワーク(DNN)を使用することは、多数のモデル固有の欠点のために困難です。
近年,これらの安全対策を目的とした最先端技術動物園が出現している。
本稿は、機械学習の専門家と安全エンジニアの両方に対処する。
論文 参考訳(メタデータ) (2021-04-29T09:54:54Z) - Towards interpreting ML-based automated malware detection models: a
survey [4.721069729610892]
既存の機械学習モデルのほとんどはブラックボックスで、プレディションの結果は予測不能になった。
本論文は,MLベースのマルウェア検出器の解釈可能性に関する既存の研究を検討し,分類することを目的とする。
論文 参考訳(メタデータ) (2021-01-15T17:34:40Z) - Interpreting Machine Learning Malware Detectors Which Leverage N-gram
Analysis [2.6397379133308214]
サイバーセキュリティアナリストは、常にルールベースや署名ベースの検出と同じくらい解釈可能で理解可能なソリューションを好む。
本研究の目的は,MLベースのマルウェア検出装置に適用した場合の,最先端のMLモデルの解釈可能性の評価である。
論文 参考訳(メタデータ) (2020-01-27T19:10:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。