Enhancing Large Language Models with Domain-Specific Knowledge: The Case in Topological Materials
- URL: http://arxiv.org/abs/2409.13732v2
- Date: Wed, 25 Dec 2024 00:49:28 GMT
- Title: Enhancing Large Language Models with Domain-Specific Knowledge: The Case in Topological Materials
- Authors: HuangChao Xu, Baohua Zhang, Zhong Jin, Tiannian Zhu, Quansheng Wu, Hongming Weng,
- Abstract summary: Large language models (LLMs) have demonstrated impressive performance in the text generation task.
We develop a specialized dialogue system for topological materials called TopoChat.
TopoChat exhibits superior performance in structural and property querying, material recommendation, and complex relational reasoning.
- Score: 4.654635844923322
- License:
- Abstract: Large language models (LLMs), such as ChatGPT, have demonstrated impressive performance in the text generation task, showing the ability to understand and respond to complex instructions. However, the performance of naive LLMs in speciffc domains is limited due to the scarcity of domain-speciffc corpora and specialized training. Moreover, training a specialized large-scale model necessitates signiffcant hardware resources, which restricts researchers from leveraging such models to drive advances. Hence, it is crucial to further improve and optimize LLMs to meet speciffc domain demands and enhance their scalability. Based on the condensed matter data center, we establish a material knowledge graph (MaterialsKG) and integrate it with literature. Using large language models and prompt learning, we develop a specialized dialogue system for topological materials called TopoChat. Compared to naive LLMs, TopoChat exhibits superior performance in structural and property querying, material recommendation, and complex relational reasoning. This system enables efffcient and precise retrieval of information and facilitates knowledge interaction, thereby encouraging the advancement on the ffeld of condensed matter materials.
Related papers
- MatterChat: A Multi-Modal LLM for Material Science [40.34536331137755]
We introduce MatterChat, a versatile structure-aware multi-modal large language model.
We show that MatterChat significantly improves performance in material property prediction and human-AI interaction.
We also demonstrate its usefulness in applications such as more advanced scientific reasoning and step-by-step material synthesis.
arXiv Detail & Related papers (2025-02-18T18:19:36Z) - WisdomBot: Tuning Large Language Models with Artificial Intelligence Knowledge [17.74988145184004]
Large language models (LLMs) have emerged as powerful tools in natural language processing (NLP)
This paper presents a novel LLM for education named WisdomBot, which combines the power of LLMs with educational theories.
We introduce two key enhancements during inference, i.e., local knowledge base retrieval augmentation and search engine retrieval augmentation during inference.
arXiv Detail & Related papers (2025-01-22T13:36:46Z) - Foundational Large Language Models for Materials Research [22.77591279242839]
Large Language Models (LLMs) offer opportunities to accelerate materials research through automated analysis and prediction.
Here, we present LLaMat, a family of foundational models for materials science developed through continued pretraining of LLaMA models.
We demonstrate that LLaMat excels in materials-specific NLP and structured information extraction while maintaining general linguistic capabilities.
arXiv Detail & Related papers (2024-12-12T18:46:38Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models [71.25225058845324]
Large Language Models (LLMs) have demonstrated revolutionary abilities in language understanding and generation.
Retrieval-Augmented Generation (RAG) can offer reliable and up-to-date external knowledge.
RA-LLMs have emerged to harness external and authoritative knowledge bases, rather than relying on the model's internal knowledge.
arXiv Detail & Related papers (2024-05-10T02:48:45Z) - A Self-enhancement Approach for Domain-specific Chatbot Training via
Knowledge Mining and Digest [62.63606958140248]
Large Language Models (LLMs) often encounter challenges when dealing with intricate and knowledge-demanding queries in specific domains.
This paper introduces a novel approach to enhance LLMs by effectively extracting the relevant knowledge from domain-specific textual sources.
We train a knowledge miner, namely LLMiner, which autonomously extracts Question-Answer pairs from relevant documents.
arXiv Detail & Related papers (2023-11-17T16:09:10Z) - Knowledge Plugins: Enhancing Large Language Models for Domain-Specific
Recommendations [50.81844184210381]
We propose a general paradigm that augments large language models with DOmain-specific KnowledgE to enhance their performance on practical applications, namely DOKE.
This paradigm relies on a domain knowledge extractor, working in three steps: 1) preparing effective knowledge for the task; 2) selecting the knowledge for each specific sample; and 3) expressing the knowledge in an LLM-understandable way.
arXiv Detail & Related papers (2023-11-16T07:09:38Z) - Generative retrieval-augmented ontologic graph and multi-agent
strategies for interpretive large language model-based materials design [0.0]
Transformer neural networks show promising capabilities, in particular for uses in materials analysis, design and manufacturing.
Here we explore the use of large language models (LLMs) as a tool that can support engineering analysis of materials.
arXiv Detail & Related papers (2023-10-30T20:31:50Z) - MechGPT, a language-based strategy for mechanics and materials modeling
that connects knowledge across scales, disciplines and modalities [0.0]
We use a Large Language Model (LLM) to distill question-answer pairs from raw sources followed by fine-tuning.
The resulting MechGPT LLM foundation model is used in a series of computational experiments to explore its capacity for knowledge retrieval, various language tasks, hypothesis generation, and connecting knowledge across disparate areas.
arXiv Detail & Related papers (2023-10-16T14:29:35Z) - Knowledge-Augmented Reasoning Distillation for Small Language Models in
Knowledge-Intensive Tasks [90.11273439036455]
Large Language Models (LLMs) have shown promising performance in knowledge-intensive reasoning tasks.
We propose Knowledge-Augmented Reasoning Distillation (KARD), a novel method that fine-tunes small LMs to generate rationales from LLMs with augmented knowledge retrieved from an external knowledge base.
We empirically show that KARD significantly improves the performance of small T5 and GPT models on the challenging knowledge-intensive reasoning datasets.
arXiv Detail & Related papers (2023-05-28T13:00:00Z) - Empowering Language Models with Knowledge Graph Reasoning for Question
Answering [117.79170629640525]
We propose knOwledge REasOning empowered Language Model (OREO-LM)
OREO-LM consists of a novel Knowledge Interaction Layer that can be flexibly plugged into existing Transformer-based LMs.
We show significant performance gain, achieving state-of-art results in the Closed-Book setting.
arXiv Detail & Related papers (2022-11-15T18:26:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.