Do Large Language Models Need a Content Delivery Network?
- URL: http://arxiv.org/abs/2409.13761v2
- Date: Mon, 21 Oct 2024 15:59:18 GMT
- Title: Do Large Language Models Need a Content Delivery Network?
- Authors: Yihua Cheng, Kuntai Du, Jiayi Yao, Junchen Jiang,
- Abstract summary: We envision a Knowledge Delivery Network (KDN) that dynamically optimize the storage, transfer, and composition of KV cache across LLM engines and other compute and storage resources.
We have open-sourced a KDN prototype at https://github.com/LMCache/LMCache.
- Score: 4.816440228214873
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As the use of large language models (LLMs) expands rapidly, so does the range of knowledge needed to supplement various LLM queries. Thus, enabling flexible and efficient injection of new knowledge in LLM inference is critical. Three high-level options exist: (i) embedding the knowledge in LLM's weights (i.e., fine-tuning), (ii) including the knowledge as a part of LLM's text input (i.e., in-context learning), or (iii) injecting the KV caches of the new knowledge to LLM during prefill. This paper argues that, although fine-tuning and in-context learning are popular, using KV caches as the medium of knowledge could simultaneously enable more modular management of knowledge injection and more efficient LLM serving with low cost and fast response. To realize these benefits, we envision a Knowledge Delivery Network (KDN), a new system component in LLM services that dynamically optimizes the storage, transfer, and composition of KV cache across LLM engines and other compute and storage resources. We believe that, just like content delivery networks (CDNs), such as Akamai, enabled the success of the Internet ecosystem through their efficient data delivery, KDNs will be critical to the success of LLM applications through their efficient knowledge delivery. We have open-sourced a KDN prototype at https://github.com/LMCache/LMCache.
Related papers
- Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
Large language models (LLMs) have demonstrated remarkable capacities on various tasks, and integrating the capacities of LLMs into the Internet of Things (IoT) applications has drawn much research attention recently.
Due to security concerns, many institutions avoid accessing state-of-the-art commercial LLM services, requiring the deployment and utilization of open-source LLMs in a local network setting.
We propose a LLM-based Generative IoT (GIoT) system deployed in the local network setting in this study.
arXiv Detail & Related papers (2024-06-14T19:24:00Z) - MAP-Neo: Highly Capable and Transparent Bilingual Large Language Model Series [86.31735321970481]
We open-source MAP-Neo, a bilingual language model with 7B parameters trained from scratch on 4.5T high-quality tokens.
Our MAP-Neo is the first fully open-sourced bilingual LLM with comparable performance compared to existing state-of-the-art LLMs.
arXiv Detail & Related papers (2024-05-29T17:57:16Z) - Small Models, Big Insights: Leveraging Slim Proxy Models To Decide When and What to Retrieve for LLMs [60.40396361115776]
This paper introduces a novel collaborative approach, namely SlimPLM, that detects missing knowledge in large language models (LLMs) with a slim proxy model.
We employ a proxy model which has far fewer parameters, and take its answers as answers.
Heuristic answers are then utilized to predict the knowledge required to answer the user question, as well as the known and unknown knowledge within the LLM.
arXiv Detail & Related papers (2024-02-19T11:11:08Z) - Knowledge Fusion of Large Language Models [73.28202188100646]
This paper introduces the notion of knowledge fusion for large language models (LLMs)
We externalize their collective knowledge and unique strengths, thereby elevating the capabilities of the target model beyond those of any individual source LLM.
Our findings confirm that the fusion of LLMs can improve the performance of the target model across a range of capabilities such as reasoning, commonsense, and code generation.
arXiv Detail & Related papers (2024-01-19T05:02:46Z) - Towards Vision Enhancing LLMs: Empowering Multimodal Knowledge Storage
and Sharing in LLMs [72.49064988035126]
We propose an approach called MKS2, aimed at enhancing multimodal large language models (MLLMs)
Specifically, we introduce the Modular Visual Memory, a component integrated into the internal blocks of LLMs, designed to store open-world visual information efficiently.
Our experiments demonstrate that MKS2 substantially augments the reasoning capabilities of LLMs in contexts necessitating physical or commonsense knowledge.
arXiv Detail & Related papers (2023-11-27T12:29:20Z) - Knowledge Solver: Teaching LLMs to Search for Domain Knowledge from
Knowledge Graphs [19.0797968186656]
Large language models (LLMs) are versatile and can solve different tasks due to their emergent ability and generalizability.
In some previous works, additional modules like graph neural networks (GNNs) are trained on retrieved knowledge from external knowledge bases.
arXiv Detail & Related papers (2023-09-06T15:55:01Z) - ONCE: Boosting Content-based Recommendation with Both Open- and
Closed-source Large Language Models [39.193602991105]
Large language models (LLMs) possess deep semantic comprehension and extensive knowledge from pretraining.
We explore the potential of leveraging both open- and closed-source LLMs to enhance content-based recommendation.
We observed a significant relative improvement of up to 19.32% compared to existing state-of-the-art recommendation models.
arXiv Detail & Related papers (2023-05-11T04:51:21Z) - Augmented Large Language Models with Parametric Knowledge Guiding [72.71468058502228]
Large Language Models (LLMs) have significantly advanced natural language processing (NLP) with their impressive language understanding and generation capabilities.
Their performance may be suboptimal for domain-specific tasks that require specialized knowledge due to limited exposure to the related data.
We propose the novel Parametric Knowledge Guiding (PKG) framework, which equips LLMs with a knowledge-guiding module to access relevant knowledge.
arXiv Detail & Related papers (2023-05-08T15:05:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.