論文の概要: Solving Combinatorial Optimization Problems on a Photonic Quantum Computer
- arxiv url: http://arxiv.org/abs/2409.13781v1
- Date: Thu, 19 Sep 2024 20:57:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 05:13:17.372343
- Title: Solving Combinatorial Optimization Problems on a Photonic Quantum Computer
- Title(参考訳): フォトニック量子コンピュータにおける組合せ最適化問題の解法
- Authors: Mateusz Slysz, Krzysztof Kurowski, Grzegorz Waligóra,
- Abstract要約: 組合せ最適化問題は、ロジスティクスから暗号まで、様々な分野において重要な計算問題を引き起こす。
従来の計算手法は指数関数的な複雑性に苦しむことが多く、量子コンピューティングのような代替パラダイムへの探索を動機付けている。
フォトニック量子コンピュータが解空間を効率的に探索し、様々な問題に対する最適解を同定する方法を実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Combinatorial optimization problems pose significant computational challenges across various fields, from logistics to cryptography. Traditional computational methods often struggle with their exponential complexity, motivating exploration into alternative paradigms such as quantum computing. In this paper, we investigate the application of photonic quantum computing to solve combinatorial optimization problems. Leveraging the principles of quantum mechanics, we demonstrate how photonic quantum computers can efficiently explore solution spaces and identify optimal solutions for a range of combinatorial problems. We provide an overview of quantum algorithms tailored for combinatorial optimization for different quantum architectures (boson sampling, quantum annealing and gate-based quantum computing). Additionally, we discuss the advantages and challenges of implementing those algorithms on photonic quantum hardware. Through experiments run on an 8-qumode photonic quantum device, as well as numerical simulations, we evaluate the performance of photonic quantum computers in solving representative combinatorial optimization problems, such as the Max-Cut problem and the Job Shop Scheduling Problem.
- Abstract(参考訳): 組合せ最適化問題は、ロジスティクスから暗号まで、様々な分野において重要な計算問題を引き起こす。
従来の計算手法は指数関数的な複雑性に苦しむことが多く、量子コンピューティングのような代替パラダイムへの探索を動機付けている。
本稿では,光量子コンピューティングによる組合せ最適化問題の解法について検討する。
量子力学の原理を応用して、フォトニック量子コンピュータが解空間を効率的に探索し、様々な組合せ問題に対する最適解を同定する方法を実証する。
本稿では,異なる量子アーキテクチャ(サンプリング,量子アニーリング,ゲートベース量子コンピューティング)の組合せ最適化に適した量子アルゴリズムの概要について述べる。
さらに、フォトニック量子ハードウェア上でこれらのアルゴリズムを実装する際の利点と課題についても論じる。
8量子フォトニック量子デバイスを用いた実験と数値シミュレーションにより,Max-Cut問題やジョブショップスケジューリング問題といった代表的な組合せ最適化問題の解法におけるフォトニック量子コンピュータの性能を評価する。
関連論文リスト
- Hybrid quantum-classical approach for combinatorial problems at hadron colliders [7.2572969510173655]
粒子物理学実験における問題を解くために量子アルゴリズムの可能性を探る。
大型ハドロン衝突型加速器の完全ハドロンチャネルにおけるトップクォーク対生成について検討した。
量子アルゴリズムを用いることで,正しいペアリングを選択する効率を大幅に向上することを示す。
論文 参考訳(メタデータ) (2024-10-29T18:00:07Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
量子コンピューティングは、アルゴリズムを設計する新しい方法の基礎となる。
どの場の量子スピードアップが達成できるかという新たな課題が生じる。
量子サブルーチンの設計は、従来のサブルーチンよりも効率的で、新しい強力な量子アルゴリズムに固い柱を向ける。
論文 参考訳(メタデータ) (2024-02-26T09:32:07Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
期待されている量子コンピュータの応用は、科学と産業にまたがる。
本稿では,量子アルゴリズムの応用分野について検討する。
私たちは、各領域における課題と機会を"エンドツーエンド"な方法で概説します。
論文 参考訳(メタデータ) (2023-10-04T17:53:55Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
単一画像超解像(SISR)問題を解くために,量子コンピューティングに基づくアルゴリズムを提案する。
提案したAQCアルゴリズムは、SISRの精度を維持しつつ、古典的なアナログよりも向上したスピードアップを実現する。
論文 参考訳(メタデータ) (2023-04-18T11:57:15Z) - Information scrambling and entanglement in quantum approximate
optimization algorithm circuits [9.730534141168752]
変分量子アルゴリズムは、ノイズのある中間スケール量子(NISQ)時代に量子アドバンテージを示すことを約束している。
本稿では,QAOA回路における情報スクランブルと絡み合いについて検討し,より難しい問題に対して,より多くの量子資源が必要であることを明らかにする。
論文 参考訳(メタデータ) (2023-01-18T11:36:49Z) - Quantum Computing Techniques for Multi-Knapsack Problems [1.0136953995598361]
我々は、異なる量子ソフトウェアとハードウェアツールを用いて、最も顕著で最先端の量子アルゴリズムを調査する。
本稿では,QAOA や VQE などのゲート型量子アルゴリズムについて考察し,その解法と実行時推定について概観する。
論文 参考訳(メタデータ) (2023-01-13T20:21:24Z) - Efficient Use of Quantum Linear System Algorithms in Interior Point
Methods for Linear Optimization [0.0]
線形最適化問題を解くために、非現実的な量子内点法を開発した。
また、量子ソルバの過度な時間なしで、反復リファインメントによって正確な解を得る方法についても論じる。
論文 参考訳(メタデータ) (2022-05-02T21:30:56Z) - Multiple Query Optimization using a Hybrid Approach of Classical and
Quantum Computing [1.7077661158850292]
データ集約的な問題領域において重要なNPハード問題である多重クエリ最適化問題(MQO)に取り組む。
ゲート型量子コンピュータ上でMQOを解くために,新しい古典量子アルゴリズムを提案する。
提案アルゴリズムでは, クビット効率が99%に近づき, ほぼ2倍に向上した。
論文 参考訳(メタデータ) (2021-07-22T08:12:49Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
3次元形状と画像のマッチング問題は、NPハードな置換行列制約を持つ二次代入問題(QAP)としてしばしば定式化される。
本稿では,量子ハードウェア上での効率的な実行に適した制約のない問題として,いくつかのQAPの再構成を提案する。
提案アルゴリズムは、将来の量子コンピューティングアーキテクチャにおいて、より高次元にスケールする可能性がある。
論文 参考訳(メタデータ) (2021-07-08T17:59:55Z) - Quantum Geometric Machine Learning for Quantum Circuits and Control [78.50747042819503]
我々は、量子幾何学的制御問題に対するディープラーニングの適用をレビューし、拡張する。
量子回路合成問題における時間-最適制御の強化について述べる。
我々の研究結果は、時間-最適制御問題に対する機械学習と幾何学的手法を組み合わせた量子制御と量子情報理論の研究者にとって興味深いものである。
論文 参考訳(メタデータ) (2020-06-19T19:12:14Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
小型地震インバージョン問題を解決するために,D波量子アニールに量子アルゴリズムを適用した。
量子コンピュータによって達成される精度は、少なくとも古典的コンピュータと同程度である。
論文 参考訳(メタデータ) (2020-05-06T14:18:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。