A Value Based Parallel Update MCTS Method for Multi-Agent Cooperative Decision Making of Connected and Automated Vehicles
- URL: http://arxiv.org/abs/2409.13783v1
- Date: Fri, 20 Sep 2024 03:13:01 GMT
- Title: A Value Based Parallel Update MCTS Method for Multi-Agent Cooperative Decision Making of Connected and Automated Vehicles
- Authors: Ye Han, Lijun Zhang, Dejian Meng, Xingyu Hu, Songyu Weng,
- Abstract summary: This paper proposes a Monte Carlo tree search (MCTS) method with parallel update for multi-agent Markov game with limited horizon rationality and time discounted setting.
By analyzing the parallel actions in the multi-vehicle joint action space in the partial-steady-state traffic flow, the parallel update method can quickly exclude potential dangerous actions.
- Score: 9.840325772591024
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To solve the problem of lateral and logitudinal joint decision-making of multi-vehicle cooperative driving for connected and automated vehicles (CAVs), this paper proposes a Monte Carlo tree search (MCTS) method with parallel update for multi-agent Markov game with limited horizon and time discounted setting. By analyzing the parallel actions in the multi-vehicle joint action space in the partial-steady-state traffic flow, the parallel update method can quickly exclude potential dangerous actions, thereby increasing the search depth without sacrificing the search breadth. The proposed method is tested in a large number of randomly generated traffic flow. The experiment results show that the algorithm has good robustness and better performance than the SOTA reinforcement learning algorithms and heuristic methods. The vehicle driving strategy using the proposed algorithm shows rationality beyond human drivers, and has advantages in traffic efficiency and safety in the coordinating zone.
Related papers
- Towards Interactive and Learnable Cooperative Driving Automation: a Large Language Model-Driven Decision-Making Framework [79.088116316919]
Connected Autonomous Vehicles (CAVs) have begun to open road testing around the world, but their safety and efficiency performance in complex scenarios is still not satisfactory.
This paper proposes CoDrivingLLM, an interactive and learnable LLM-driven cooperative driving framework.
arXiv Detail & Related papers (2024-09-19T14:36:00Z) - Multi-agent Path Finding for Cooperative Autonomous Driving [8.8305853192334]
We devise an optimal and complete algorithm, Order-based Search with Kinematics Arrival Time Scheduling (OBS-KATS), which significantly outperforms existing algorithms.
Our work is directly applicable to many similarly scaled traffic and multi-robot scenarios with directed lanes.
arXiv Detail & Related papers (2024-02-01T04:39:15Z) - Deep Reinforcement Learning for Autonomous Vehicle Intersection
Navigation [0.24578723416255746]
Reinforcement learning algorithms have emerged as a promising approach to address these challenges.
Here, we address the problem of efficiently and safely navigating T-intersections using a lower-cost, single-agent approach.
Our results reveal that the proposed approach enables the AV to effectively navigate T-intersections, outperforming previous methods in terms of travel delays, collision minimization, and overall cost.
arXiv Detail & Related papers (2023-09-30T10:54:02Z) - Roulette-Wheel Selection-Based PSO Algorithm for Solving the Vehicle
Routing Problem with Time Windows [58.891409372784516]
This paper presents a novel form of the PSO methodology that uses the Roulette Wheel Method (RWPSO)
Experiments using the Solomon VRPTW benchmark datasets on the RWPSO demonstrate that RWPSO is competitive with other state-of-the-art algorithms from the literature.
arXiv Detail & Related papers (2023-06-04T09:18:02Z) - Real-time Cooperative Vehicle Coordination at Unsignalized Road
Intersections [7.860567520771493]
Cooperative coordination at unsignalized road intersections aims to improve the safety driving traffic throughput for connected and automated vehicles.
We introduce a model-free Markov Decision Process (MDP) and tackle it by a Twin Delayed Deep Deterministic Policy (TD3)-based strategy in the deep reinforcement learning framework.
We show that the proposed strategy could achieve near-optimal performance in sub-static coordination scenarios and significantly improve control in the realistic continuous flow.
arXiv Detail & Related papers (2022-05-03T02:56:02Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z) - Multi-Modal Fusion Transformer for End-to-End Autonomous Driving [59.60483620730437]
We propose TransFuser, a novel Multi-Modal Fusion Transformer, to integrate image and LiDAR representations using attention.
Our approach achieves state-of-the-art driving performance while reducing collisions by 76% compared to geometry-based fusion.
arXiv Detail & Related papers (2021-04-19T11:48:13Z) - Real-world Ride-hailing Vehicle Repositioning using Deep Reinforcement
Learning [52.2663102239029]
We present a new practical framework based on deep reinforcement learning and decision-time planning for real-world vehicle on idle-hailing platforms.
Our approach learns ride-based state-value function using a batch training algorithm with deep value.
We benchmark our algorithm with baselines in a ride-hailing simulation environment to demonstrate its superiority in improving income efficiency.
arXiv Detail & Related papers (2021-03-08T05:34:05Z) - A Multi-intersection Vehicular Cooperative Control based on
End-Edge-Cloud Computing [25.05518638792962]
We propose a Multi-intersection Vehicular Cooperative Control (MiVeCC) to enable cooperation among vehicles in a large area with multiple intersections.
Firstly, a vehicular end-edge-cloud computing framework is proposed to facilitate end-edge-cloud vertical cooperation and horizontal cooperation among vehicles.
To deal with high-density traffic, vehicle selection methods are proposed to reduce the state space and accelerate algorithm convergence without performance degradation.
arXiv Detail & Related papers (2020-12-01T14:15:14Z) - An End-to-end Deep Reinforcement Learning Approach for the Long-term
Short-term Planning on the Frenet Space [0.0]
This paper presents a novel end-to-end continuous deep reinforcement learning approach towards autonomous cars' decision-making and motion planning.
For the first time, we define both states and action spaces on the Frenet space to make the driving behavior less variant to the road curvatures.
The algorithm generates continuoustemporal trajectories on the Frenet frame for the feedback controller to track.
arXiv Detail & Related papers (2020-11-26T02:40:07Z) - Reinforcement Learning Based Vehicle-cell Association Algorithm for
Highly Mobile Millimeter Wave Communication [53.47785498477648]
This paper investigates the problem of vehicle-cell association in millimeter wave (mmWave) communication networks.
We first formulate the user state (VU) problem as a discrete non-vehicle association optimization problem.
The proposed solution achieves up to 15% gains in terms sum of user complexity and 20% reduction in VUE compared to several baseline designs.
arXiv Detail & Related papers (2020-01-22T08:51:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.