論文の概要: Intrinsic Single-Image HDR Reconstruction
- arxiv url: http://arxiv.org/abs/2409.13803v1
- Date: Fri, 20 Sep 2024 17:56:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 05:01:49.707030
- Title: Intrinsic Single-Image HDR Reconstruction
- Title(参考訳): 内在性単像HDR再建術
- Authors: Sebastian Dille, Chris Careaga, Yağız Aksoy,
- Abstract要約: そこで本研究では,本質的な領域におけるHDR再構成問題の物理的に着想を得たリモデリングを提案する。
課題を2つの単純なサブタスクに分割することで,多種多様な写真の性能向上が期待できる。
- 参考スコア(独自算出の注目度): 0.6554326244334868
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The low dynamic range (LDR) of common cameras fails to capture the rich contrast in natural scenes, resulting in loss of color and details in saturated pixels. Reconstructing the high dynamic range (HDR) of luminance present in the scene from single LDR photographs is an important task with many applications in computational photography and realistic display of images. The HDR reconstruction task aims to infer the lost details using the context present in the scene, requiring neural networks to understand high-level geometric and illumination cues. This makes it challenging for data-driven algorithms to generate accurate and high-resolution results. In this work, we introduce a physically-inspired remodeling of the HDR reconstruction problem in the intrinsic domain. The intrinsic model allows us to train separate networks to extend the dynamic range in the shading domain and to recover lost color details in the albedo domain. We show that dividing the problem into two simpler sub-tasks improves performance in a wide variety of photographs.
- Abstract(参考訳): 一般的なカメラの低ダイナミックレンジ(LDR)は、自然界のコントラストのリッチなコントラストを捉えることができず、色や彩度が飽和したピクセルの細部が失われる。
1枚のLDR写真からシーンに存在する輝度の高ダイナミックレンジ(HDR)を再構成することは、多くの計算写真やリアルな画像表示への応用において重要な課題である。
HDR再構成タスクは、シーンに存在するコンテキストを用いて、失われた詳細を推測することを目的としており、ニューラルネットワークは高レベルの幾何学的および照明的キューを理解する必要がある。
これにより、データ駆動アルゴリズムが正確で高解像度な結果を生成するのが難しくなる。
そこで本研究では,本研究におけるHDR再建問題の物理的に着想を得たリモデリングについて紹介する。
固有モデルにより、シェーディング領域のダイナミックレンジを拡張し、アルベド領域の失われた色の詳細を復元するために、個別のネットワークを訓練することができる。
課題を2つの単純なサブタスクに分割することで,多種多様な写真の性能向上が期待できる。
関連論文リスト
- Towards High-quality HDR Deghosting with Conditional Diffusion Models [88.83729417524823]
高ダイナミックレンジ(LDR)画像は、既存のディープニューラルネットワーク(DNN)技術により、複数の低ダイナミックレンジ(LDR)画像から復元することができる。
DNNは、LDR画像が飽和度と大きな動きを持つ場合、ゴーストアーティファクトを生成する。
拡散モデルの条件としてLDR特徴を利用する画像生成としてHDRデゴースト問題を定式化する。
論文 参考訳(メタデータ) (2023-11-02T01:53:55Z) - Self-Supervised High Dynamic Range Imaging with Multi-Exposure Images in
Dynamic Scenes [58.66427721308464]
Selfは、訓練中にダイナミックなマルチ露光画像のみを必要とする自己教師型再構成手法である。
Selfは最先端の自己管理手法に対して優れた結果を出し、教師付き手法に匹敵するパフォーマンスを実現している。
論文 参考訳(メタデータ) (2023-10-03T07:10:49Z) - Single Image LDR to HDR Conversion using Conditional Diffusion [18.466814193413487]
デジタル画像は現実的なシーンを再現することを目的としているが、Low Dynamic Range(LDR)カメラは現実のシーンの広いダイナミックレンジを表現できない。
本稿では,影やハイライトから複雑な詳細を復元するための深層学習に基づくアプローチを提案する。
提案フレームワークにディープベースオートエンコーダを組み込んで,コンディショニングに使用するLDR画像の潜在表現の質を高める。
論文 参考訳(メタデータ) (2023-07-06T07:19:47Z) - GlowGAN: Unsupervised Learning of HDR Images from LDR Images in the Wild [74.52723408793648]
そこで本研究では,HDR画像の生成モデルを構築するための第1の手法について述べる。
鍵となる考え方は、GAN(Generative Adversarial Network)を訓練して、様々な露光下でLDRに投影された場合、実際のLDR画像と区別できないHDR画像を生成することである。
実験の結果,GlowGANはランドスケープ,雷,窓など多くの難題において,光現実的HDR画像を合成できることがわかった。
論文 参考訳(メタデータ) (2022-11-22T15:42:08Z) - Deep Progressive Feature Aggregation Network for High Dynamic Range
Imaging [24.94466716276423]
本研究では,動的シーンにおけるHDR画像の画質向上のための高度な特徴集約ネットワークを提案する。
提案手法は,高対応特徴を暗黙的にサンプリングし,それらを粗い方法で集約してアライメントする。
実験の結果,提案手法は異なるシーン下での最先端性能を実現することができることがわかった。
論文 参考訳(メタデータ) (2022-08-04T04:37:35Z) - High Dynamic Range and Super-Resolution from Raw Image Bursts [52.341483902624006]
本稿では,露光ブラケット付きハンドヘルドカメラで撮影した原写真からの高解像度・高ダイナミックレンジカラー画像の再構成について紹介する。
提案アルゴリズムは,画像復元における最先端の学習手法と比較して,メモリ要求の少ない高速なアルゴリズムである。
実験では、ハンドヘルドカメラで野生で撮影された実際の写真に最大4ドル(約4,800円)の超高解像度な要素で優れた性能を示す。
論文 参考訳(メタデータ) (2022-07-29T13:31:28Z) - HDR-cGAN: Single LDR to HDR Image Translation using Conditional GAN [24.299931323012757]
低ダイナミックレンジ(LDR)カメラは、現実世界のシーンの広いダイナミックレンジを表現できない。
本研究では,HDR画像の再構成を行いながら,飽和領域の詳細を復元する深層学習手法を提案する。
本稿では,HDR-REALデータセットとHDR-SYNTHデータセットに対して,エンドツーエンドでトレーニングされた新しい条件付きGAN(cGAN)ベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-04T18:50:35Z) - HDRUNet: Single Image HDR Reconstruction with Denoising and
Dequantization [39.82945546614887]
本研究では,空間動的エンコーダデコーダネットワークであるHDRUNetを用いて,単一画像HDR再構成のためのエンドツーエンドマッピングを学習する。
本手法は,定量的比較と視覚的品質において最先端の性能を実現する。
論文 参考訳(メタデータ) (2021-05-27T12:12:34Z) - HDR-GAN: HDR Image Reconstruction from Multi-Exposed LDR Images with
Large Motions [62.44802076971331]
マルチ露光LDR画像からHDR画像を合成するための新しいGANモデルHDR-GANを提案する。
本手法は,敵対学習を取り入れることで,欠落したコンテンツのある領域に忠実な情報を生成することができる。
論文 参考訳(メタデータ) (2020-07-03T11:42:35Z) - Single-Image HDR Reconstruction by Learning to Reverse the Camera
Pipeline [100.5353614588565]
本稿では,LDR画像形成パイプラインの領域知識をモデルに組み込むことを提案する。
我々は,HDRto-LDR画像形成パイプラインを(1)ダイナミックレンジクリッピング,(2)カメラ応答関数からの非線形マッピング,(3)量子化としてモデル化する。
提案手法は,最先端の単一画像HDR再構成アルゴリズムに対して良好に動作することを示す。
論文 参考訳(メタデータ) (2020-04-02T17:59:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。