論文の概要: Segment Discovery: Enhancing E-commerce Targeting
- arxiv url: http://arxiv.org/abs/2409.13847v1
- Date: Fri, 20 Sep 2024 18:42:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 05:01:49.597520
- Title: Segment Discovery: Enhancing E-commerce Targeting
- Title(参考訳): Segment Discovery:Eコマースのターゲティングを強化する
- Authors: Qiqi Li, Roopali Singh, Charin Polpanumas, Tanner Fiez, Namita Kumar, Shreya Chakrabarti,
- Abstract要約: 本稿では、アップリフトモデリングと制約付き最適化に基づくポリシーフレームワークを提案する。
本研究では,2つの大規模実験と実運用による最先端のターゲット手法の改善について述べる。
- 参考スコア(独自算出の注目度): 8.000199536112937
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern e-commerce services frequently target customers with incentives or interventions to engage them in their products such as games, shopping, video streaming, etc. This customer engagement increases acquisition of more customers and retention of existing ones, leading to more business for the company while improving customer experience. Often, customers are either randomly targeted or targeted based on the propensity of desirable behavior. However, such policies can be suboptimal as they do not target the set of customers who would benefit the most from the intervention and they may also not take account of any constraints. In this paper, we propose a policy framework based on uplift modeling and constrained optimization that identifies customers to target for a use-case specific intervention so as to maximize the value to the business, while taking account of any given constraints. We demonstrate improvement over state-of-the-art targeting approaches using two large-scale experimental studies and a production implementation.
- Abstract(参考訳): 現代のeコマースサービスは、ゲーム、ショッピング、ビデオストリーミングなどの製品に顧客を巻き込むインセンティブや介入で顧客を狙うことが多い。
この顧客エンゲージメントは、より多くの顧客獲得と既存の顧客維持を促進し、顧客エクスペリエンスを改善しながら、企業のビジネスを拡大します。
多くの場合、顧客はランダムにターゲットされるか、望ましい行動の妥当性に基づいてターゲットされる。
しかし、そのようなポリシーは、介入から最も利益を得るであろう顧客の集合を標的にせず、またいかなる制約も考慮しないため、準最適である。
本稿では,要求された制約を考慮しつつ,ビジネスに対する価値を最大化するために,ユーザに対してユースケース特異的な介入を目標とする,アップリフトモデリングと制約付き最適化に基づくポリシフレームワークを提案する。
本研究では,2つの大規模実験と実運用による最先端のターゲティング手法の改善について述べる。
関連論文リスト
- Reinforcement Learning applied to Insurance Portfolio Pursuit [11.151075150673961]
ポートフォリオ探索問題に対する新しい強化学習アルゴリズムを考案する。
複雑な合成市場環境において,本手法を試験し,ベースライン法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-08-01T16:58:54Z) - Emulating Full Client Participation: A Long-Term Client Selection Strategy for Federated Learning [48.94952630292219]
本稿では,クライアントの完全参加によって達成されるパフォーマンスをエミュレートする新しいクライアント選択戦略を提案する。
1ラウンドで、クライアントサブセットとフルクライアントセット間の勾配空間推定誤差を最小化し、クライアントを選択する。
複数ラウンド選択において、類似したデータ分布を持つクライアントが選択される頻度に類似することを保証する、新しい個性制約を導入する。
論文 参考訳(メタデータ) (2024-05-22T12:27:24Z) - Intent Detection at Scale: Tuning a Generic Model using Relevant Intents [0.5461938536945723]
本研究は,単一のジェネリックモデルとクライアント毎のインテントリストを組み合わせることで,インテント予測を多種多様なクライアントに効果的に拡張するシステムを提案する。
当社のアプローチは、クライアントに対してパーソナライズされたエクスペリエンスを提供しながら、トレーニングとメンテナンスのコストを最小限に抑え、関連する意図の変化にシームレスに対応できるようにします。
最終的なシステムは、業界固有のモデルと比較して非常に優れたパフォーマンスを示し、柔軟性と多様なクライアントニーズに対応する能力を示している。
論文 参考訳(メタデータ) (2023-09-15T13:15:20Z) - A Meta-learning based Stacked Regression Approach for Customer Lifetime
Value Prediction [3.6002910014361857]
顧客ライフタイムバリュー(英:Customer Lifetime Value、CLV)とは、取引/購入の合計金額である。
CLVは、銀行、保険、オンラインエンタテインメント、ゲーム、Eコマースなど、いくつかの異なるビジネスドメインでアプリケーションを見つける。
本稿では,効果的かつ包括的かつシンプルかつ解釈可能なシステムを提案する。
論文 参考訳(メタデータ) (2023-08-07T14:22:02Z) - Structured Dynamic Pricing: Optimal Regret in a Global Shrinkage Model [50.06663781566795]
消費者の嗜好と価格感が時間とともに変化する動的モデルを考える。
我々は,モデルパラメータの順序を事前に把握している透視者と比較して,収益損失が予想される,後悔による動的価格政策の性能を計測する。
提案した政策の最適性を示すだけでなく,政策立案のためには,利用可能な構造情報を組み込むことが不可欠であることを示す。
論文 参考訳(メタデータ) (2023-03-28T00:23:23Z) - Personalized Promotion Decision Making Based on Direct and Enduring
Effect Predictions [5.50110172922112]
本稿では,顧客ごとの直接的かつ永続的な対応をモデル化し,複数治療促進意思決定の枠組みを提案する。
まず、顧客直接持続効果(CDEE)モデルを提案し、顧客直接持続応答を予測する。
CDEEの助けを借りて、コストを予算に抑えつつ、持続的な効果を最適化するためにインセンティブアロケーションをパーソナライズする。
論文 参考訳(メタデータ) (2022-07-23T07:13:57Z) - Influencing Long-Term Behavior in Multiagent Reinforcement Learning [59.98329270954098]
時間的アプローチが無限に近づくと、他のエージェントの制限ポリシーを考えるための原則的枠組みを提案する。
具体的には、各エージェントの行動が他のエージェントが行うポリシーの制限セットに与える影響を直接考慮し、各エージェントの平均報酬を最大化する新しい最適化目標を開発する。
我々の遠視評価により、様々な領域における最先端のベースラインよりも長期的性能が向上した。
論文 参考訳(メタデータ) (2022-03-07T17:32:35Z) - Towards Revenue Maximization with Popular and Profitable Products [69.21810902381009]
企業マーケティングの共通のゴールは、様々な効果的なマーケティング戦略を活用することで、収益/利益を最大化することである。
商品の収益性に関する信頼性のある情報を見つけることは、ほとんどの製品が一定の時期にピークを迎える傾向があるため困難である。
本稿では、経済行動に基づく収益問題に対処し、ターゲットマーケティングのための0n-shelf Popular and most Profitable Products(OPPPs)を実行するための一般的な利益志向の枠組みを提案する。
論文 参考訳(メタデータ) (2022-02-26T02:07:25Z) - Fairness, Welfare, and Equity in Personalized Pricing [88.9134799076718]
顧客特性に基づくパーソナライズ価格における公平性、福祉、株式の配慮の相互作用について検討する。
選択ワクチンの価格補助金と、マイクロクレジットの下流結果に対するパーソナライズされた利率の影響の2つの設定において、パーソナライズされた価格の潜在的利点を示す。
論文 参考訳(メタデータ) (2020-12-21T01:01:56Z) - Dynamically Tie the Right Offer to the Right Customer in
Telecommunications Industry [0.0]
本研究は,顧客ターゲットのキャンペーン依存変数に着目した概念モデルを提案する。
この研究の顧客セグメンテーションの結果は、マーケターにとってより意味があり、関連性があるかもしれない。
論文 参考訳(メタデータ) (2020-10-18T16:44:51Z) - Dynamic Knapsack Optimization Towards Efficient Multi-Channel Sequential
Advertising [52.3825928886714]
我々は、動的knapsack問題として、シーケンシャルな広告戦略最適化を定式化する。
理論的に保証された二段階最適化フレームワークを提案し、元の最適化空間の解空間を大幅に削減する。
強化学習の探索効率を向上させるため,効果的な行動空間削減手法も考案した。
論文 参考訳(メタデータ) (2020-06-29T18:50:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。