論文の概要: Boolean Product Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2409.14001v1
- Date: Sat, 21 Sep 2024 03:31:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 04:06:38.442916
- Title: Boolean Product Graph Neural Networks
- Title(参考訳): ブール積グラフニューラルネットワーク
- Authors: Ziyan Wang, Bin Liu, Ling Xiang,
- Abstract要約: グラフニューラルネットワーク(GNN)は最近、近隣ノードからの情報の集約を含む重要な操作によって、大きな成功を収めている。
本稿では,GNNにおける新しいブール積に基づくグラフ残差接続を提案し,潜在グラフと元のグラフをリンクする。
提案手法をベンチマークデータセットで検証し,GNNの性能とロバスト性を向上させる能力を示す。
- 参考スコア(独自算出の注目度): 8.392545965667288
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Graph Neural Networks (GNNs) have recently achieved significant success, with a key operation involving the aggregation of information from neighboring nodes. Substantial researchers have focused on defining neighbors for aggregation, predominantly based on observed adjacency matrices. However, in many scenarios, the explicitly given graphs contain noise, which can be amplified during the messages-passing process. Therefore, many researchers have turned their attention to latent graph inference, specifically learning a parametric graph. To mitigate fluctuations in latent graph structure learning, this paper proposes a novel Boolean product-based graph residual connection in GNNs to link the latent graph and the original graph. It computes the Boolean product between the latent graph and the original graph at each layer to correct the learning process. The Boolean product between two adjacency matrices is equivalent to triangle detection. Accordingly, the proposed Boolean product graph neural networks can be interpreted as discovering triangular cliques from the original and the latent graph. We validate the proposed method in benchmark datasets and demonstrate its ability to enhance the performance and robustness of GNNs.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は最近、近隣ノードからの情報の集約を含む重要な操作によって、大きな成功を収めている。
現状の研究者は、主に観測された隣接行列に基づいて、アグリゲーションの隣人を定義することに重点を置いている。
しかし、多くのシナリオでは、明示的に与えられたグラフにはノイズが含まれており、メッセージパッシングプロセス中に増幅することができる。
そのため、多くの研究者は、特にパラメトリックグラフを学習する潜在グラフ推論に注意を向けている。
本稿では,潜時グラフ構造学習における変動を緩和するために,GNNにおける新しいブール積ベースグラフ残差接続を提案し,潜時グラフと原グラフをリンクする。
遅延グラフと各レイヤの元のグラフの間のブール積を計算し、学習プロセスを修正する。
2つの隣接行列の間のブール積は三角形検出と等価である。
したがって、提案したブール積グラフニューラルネットワークは、元のグラフと潜在グラフから三角形の傾きを発見するものとして解釈することができる。
提案手法をベンチマークデータセットで検証し,GNNの性能とロバスト性を向上させる能力を示す。
関連論文リスト
- NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - A Spectral Analysis of Graph Neural Networks on Dense and Sparse Graphs [13.954735096637298]
そこで我々は,グラフスペクトルの空間分布がグラフスペクトルに与える影響を解析し,グラフニューラルネットワーク(GNN)の高密度グラフとスパースグラフのノード分類における性能について検討した。
GNNはスパースグラフのスペクトル法よりも優れており、これらの結果を合成グラフと実グラフの両方で数値例で示すことができる。
論文 参考訳(メタデータ) (2022-11-06T22:38:13Z) - FoSR: First-order spectral rewiring for addressing oversquashing in GNNs [0.0]
グラフニューラルネットワーク(GNN)は、グラフのエッジに沿ってメッセージを渡すことによって、グラフデータの構造を活用することができる。
本稿では,グラフにエッジを体系的に付加することで過疎化を防止する計算効率のよいアルゴリズムを提案する。
提案アルゴリズムは,いくつかのグラフ分類タスクにおいて,既存のグラフリウィリング手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-10-21T07:58:03Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
グラフニューラルネットワーク(GNN)は、構造データのモデリングにおいて強力な能力を示している。
GMPTと呼ばれる新しいグラフマッチングベースのGNN事前学習フレームワークを提案する。
提案手法は,完全自己指導型プレトレーニングと粗粒型プレトレーニングに適用できる。
論文 参考訳(メタデータ) (2022-03-03T09:53:53Z) - Neighborhood Random Walk Graph Sampling for Regularized Bayesian Graph
Convolutional Neural Networks [0.6236890292833384]
本稿では,近隣ランダムウォークサンプリング(BGCN-NRWS)を用いたベイジアングラフ畳み込みネットワーク(Bayesian Graph Convolutional Network)を提案する。
BGCN-NRWSは、グラフ構造を利用したマルコフ・チェイン・モンテカルロ(MCMC)に基づくグラフサンプリングアルゴリズムを使用し、変分推論層を用いてオーバーフィッティングを低減し、半教師付きノード分類における最先端と比較して一貫して競合する分類結果を得る。
論文 参考訳(メタデータ) (2021-12-14T20:58:27Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
典型的な好適なグラフでは、エッジを指向する可能性があり、エッジをそのまま扱うか、あるいは単純に非指向にするかは、GNNモデルの性能に大きな影響を与える。
そこで我々は,グラフの方向性を適応的に学習するモデルを開発し,ノード間の長距離相関を生かした。
論文 参考訳(メタデータ) (2021-11-19T08:54:21Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
本稿では,AGE という逆グラフ埋め込みのための頑健なフレームワークを提案する。
AGEは、暗黙の分布から強化された負のサンプルとして偽の隣接ノードを生成する。
本フレームワークでは,3種類のグラフデータを扱う3つのモデルを提案する。
論文 参考訳(メタデータ) (2021-05-22T07:05:48Z) - GraphSVX: Shapley Value Explanations for Graph Neural Networks [81.83769974301995]
グラフニューラルネットワーク(GNN)は、幾何データに基づく様々な学習タスクにおいて大きな性能を発揮する。
本稿では,既存のGNN解説者の多くが満足する統一フレームワークを提案する。
GNN用に特別に設計されたポストホックローカルモデル非依存説明法であるGraphSVXを紹介します。
論文 参考訳(メタデータ) (2021-04-18T10:40:37Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを学習するためのパラメトリックモデルの一般的なクラスである。
最近の研究は、GNNが主に機能をスムースにするためにグラフを使用しており、ベンチマークタスクで競合する結果を示していると主張している。
本研究では、これらの結果が異種グラフに拡張可能かどうかを問うとともに、異なるエンティティ間の複数のタイプの関係を符号化する。
論文 参考訳(メタデータ) (2020-11-19T06:03:35Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
本稿では,ノード近接を利用したグラフプーリング手法を提案し,そのマルチホップトポロジを用いたグラフデータの階層的表現学習を改善する。
その結果,提案したグラフプーリング戦略は,公開グラフ分類ベンチマークデータセットの集合において,最先端のパフォーマンスを達成できることが示唆された。
論文 参考訳(メタデータ) (2020-06-19T13:09:44Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
指数乱グラフ(ERG)の分野における重要な課題は、大きなグラフ上の非自明なERGの適合である。
本稿では,非自明なERGに対する近似フレームワークを提案する。
我々の手法は、数百万のノードからなるスパースグラフにスケーラブルである。
論文 参考訳(メタデータ) (2020-02-14T11:42:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。