論文の概要: Diffusion on Graph: Augmentation of Graph Structure for Node Classification
- arxiv url: http://arxiv.org/abs/2503.12563v1
- Date: Sun, 16 Mar 2025 16:39:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 15:59:28.558486
- Title: Diffusion on Graph: Augmentation of Graph Structure for Node Classification
- Title(参考訳): グラフ上の拡散:ノード分類のためのグラフ構造の拡張
- Authors: Yancheng Wang, Changyu Liu, Yingzhen Yang,
- Abstract要約: グラフニューラルネットワーク(GNN)の性能を高めるために合成グラフ構造を生成するグラフ拡散(DoG)を提案する。
DoGによって生成された合成グラフ構造は、元のグラフと組み合わせて、ノードレベルの学習タスクのトレーニングのための拡張グラフを形成する。
合成グラフ構造によるノイズの悪影響を軽減するために,低ランク正規化法を提案する。
- 参考スコア(独自算出の注目度): 7.9233221247736205
- License:
- Abstract: Graph diffusion models have recently been proposed to synthesize entire graphs, such as molecule graphs. Although existing methods have shown great performance in generating entire graphs for graph-level learning tasks, no graph diffusion models have been developed to generate synthetic graph structures, that is, synthetic nodes and associated edges within a given graph, for node-level learning tasks. Inspired by the research in the computer vision literature using synthetic data for enhanced performance, we propose Diffusion on Graph (DoG), which generates synthetic graph structures to boost the performance of GNNs. The synthetic graph structures generated by DoG are combined with the original graph to form an augmented graph for the training of node-level learning tasks, such as node classification and graph contrastive learning (GCL). To improve the efficiency of the generation process, a Bi-Level Neighbor Map Decoder (BLND) is introduced in DoG. To mitigate the adverse effect of the noise introduced by the synthetic graph structures, a low-rank regularization method is proposed for the training of graph neural networks (GNNs) on the augmented graphs. Extensive experiments on various graph datasets for semi-supervised node classification and graph contrastive learning have been conducted to demonstrate the effectiveness of DoG with low-rank regularization. The code of DoG is available at https://github.com/Statistical-Deep-Learning/DoG.
- Abstract(参考訳): グラフ拡散モデルは最近、分子グラフのようなグラフ全体を合成するために提案されている。
既存手法はグラフレベルの学習タスクに対してグラフ全体の生成に優れた性能を示してきたが,グラフ拡散モデルでは,ノードレベルの学習タスクに対して,グラフ内の合成ノードと関連するエッジを生成するためのグラフ拡散モデルが開発されていない。
合成データを用いたコンピュータビジョン文献の研究に触発されて,GNNの性能を高めるために合成グラフ構造を生成するDiffusion on Graph (DoG)を提案する。
ノード分類やグラフコントラスト学習(GCL)などのノードレベルの学習タスクをトレーニングするための拡張グラフを形成するため、DoGが生成した合成グラフ構造を元のグラフと組み合わせる。
生成プロセスの効率を向上するため,DoG では Bi-Level Neighbor Map Decoder (BLND) が導入された。
合成グラフ構造がもたらす雑音の悪影響を軽減するために,グラフニューラルネットワーク(GNN)のトレーニングのための低ランク正規化法を提案する。
半教師付きノード分類とグラフコントラスト学習のためのグラフデータセットの大規模な実験を行い、低ランク正規化によるDoGの有効性を実証した。
DoGのコードはhttps://github.com/Statistical-Deep-Learning/DoGで公開されている。
関連論文リスト
- Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements [54.006506479865344]
グラフレベルグラフニューラルネットワーク(GNN)のための統一評価フレームワークを提案する。
このフレームワークは、さまざまなデータセットにわたるGNNを評価するための標準化された設定を提供する。
また,表現性の向上と一般化機能を備えた新しいGNNモデルを提案する。
論文 参考訳(メタデータ) (2025-01-01T08:48:53Z) - SPGNN: Recognizing Salient Subgraph Patterns via Enhanced Graph Convolution and Pooling [25.555741218526464]
グラフニューラルネットワーク(GNN)は、グラフやネットワークのような非ユークリッドデータ上での機械学習の分野に革命をもたらした。
本稿では,ノード表現をインジェクティブに更新する結合型グラフ畳み込み機構を提案する。
また,WL-SortPoolと呼ばれるグラフプーリングモジュールを設計し,重要なサブグラフパターンをディープラーニングで学習する。
論文 参考訳(メタデータ) (2024-04-21T13:11:59Z) - Graph Distillation with Eigenbasis Matching [43.59076214528843]
実グラフの代わりに固有基底マッチング(GDEM)を用いたグラフ蒸留を提案する。
GDEMは実グラフと合成グラフの固有基底とノード特徴を整列する。
実グラフのスペクトルを直接再現することで、GNNの影響を防止できる。
論文 参考訳(メタデータ) (2023-10-13T15:48:12Z) - GDM: Dual Mixup for Graph Classification with Limited Supervision [27.8982897698616]
グラフニューラルネットワーク(GNN)は、グラフ分類タスクにおいて優れたパフォーマンスを得るために、多数のラベル付きグラフサンプルを必要とする。
ラベル付きグラフサンプルの減少に伴い, GNNの性能は著しく低下する。
本稿では,新しいラベル付きグラフサンプルを生成するための混合グラフ拡張法を提案する。
論文 参考訳(メタデータ) (2023-09-18T20:17:10Z) - Structure-free Graph Condensation: From Large-scale Graphs to Condensed
Graph-free Data [91.27527985415007]
既存のグラフ凝縮法は、凝縮グラフ内のノードと構造の合同最適化に依存している。
我々は、大規模グラフを小さなグラフノード集合に蒸留する、SFGCと呼ばれる新しい構造自由グラフ凝縮パラダイムを提唱する。
論文 参考訳(メタデータ) (2023-06-05T07:53:52Z) - A Spectral Analysis of Graph Neural Networks on Dense and Sparse Graphs [13.954735096637298]
そこで我々は,グラフスペクトルの空間分布がグラフスペクトルに与える影響を解析し,グラフニューラルネットワーク(GNN)の高密度グラフとスパースグラフのノード分類における性能について検討した。
GNNはスパースグラフのスペクトル法よりも優れており、これらの結果を合成グラフと実グラフの両方で数値例で示すことができる。
論文 参考訳(メタデータ) (2022-11-06T22:38:13Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
本稿では、観測されたグラフと潜伏グラフのグラフ畳み込み関係を提案し、グラフ学習タスクをネットワーク逆(デコンボリューション)問題として定式化する。
固有分解に基づくスペクトル法の代わりに、近似勾配反復をアンロール・トランケートして、グラフデコンボリューションネットワーク(GDN)と呼ばれるパラメータ化ニューラルネットワークアーキテクチャに到達させる。
GDNは、教師付き方式でグラフの分布を学習し、損失関数を適応させることでリンク予測やエッジウェイト回帰タスクを実行し、本質的に帰納的である。
論文 参考訳(メタデータ) (2022-05-19T14:08:15Z) - Graph Contrastive Learning with Augmentations [109.23158429991298]
グラフデータの教師なし表現を学習するためのグラフコントラスト学習(GraphCL)フレームワークを提案する。
我々のフレームワークは、最先端の手法と比較して、類似またはより良い一般化可能性、転送可能性、堅牢性のグラフ表現を作成できることを示す。
論文 参考訳(メタデータ) (2020-10-22T20:13:43Z) - Multilevel Graph Matching Networks for Deep Graph Similarity Learning [79.3213351477689]
グラフ構造オブジェクト間のグラフ類似性を計算するためのマルチレベルグラフマッチングネットワーク(MGMN)フレームワークを提案する。
標準ベンチマークデータセットの欠如を補うため、グラフグラフ分類とグラフグラフ回帰タスクの両方のためのデータセットセットを作成し、収集した。
総合的な実験により、MGMNはグラフグラフ分類とグラフグラフ回帰タスクの両方において、最先端のベースラインモデルより一貫して優れていることが示された。
論文 参考訳(メタデータ) (2020-07-08T19:48:19Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
本稿では,ノード近接を利用したグラフプーリング手法を提案し,そのマルチホップトポロジを用いたグラフデータの階層的表現学習を改善する。
その結果,提案したグラフプーリング戦略は,公開グラフ分類ベンチマークデータセットの集合において,最先端のパフォーマンスを達成できることが示唆された。
論文 参考訳(メタデータ) (2020-06-19T13:09:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。