Boolean Product Graph Neural Networks
- URL: http://arxiv.org/abs/2409.14001v1
- Date: Sat, 21 Sep 2024 03:31:33 GMT
- Title: Boolean Product Graph Neural Networks
- Authors: Ziyan Wang, Bin Liu, Ling Xiang,
- Abstract summary: Graph Neural Networks (GNNs) have recently achieved significant success, with a key operation involving the aggregation of information from neighboring nodes.
This paper proposes a novel Boolean product-based graph residual connection in GNNs to link the latent graph and the original graph.
We validate the proposed method in benchmark datasets and demonstrate its ability to enhance the performance and robustness of GNNs.
- Score: 8.392545965667288
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Graph Neural Networks (GNNs) have recently achieved significant success, with a key operation involving the aggregation of information from neighboring nodes. Substantial researchers have focused on defining neighbors for aggregation, predominantly based on observed adjacency matrices. However, in many scenarios, the explicitly given graphs contain noise, which can be amplified during the messages-passing process. Therefore, many researchers have turned their attention to latent graph inference, specifically learning a parametric graph. To mitigate fluctuations in latent graph structure learning, this paper proposes a novel Boolean product-based graph residual connection in GNNs to link the latent graph and the original graph. It computes the Boolean product between the latent graph and the original graph at each layer to correct the learning process. The Boolean product between two adjacency matrices is equivalent to triangle detection. Accordingly, the proposed Boolean product graph neural networks can be interpreted as discovering triangular cliques from the original and the latent graph. We validate the proposed method in benchmark datasets and demonstrate its ability to enhance the performance and robustness of GNNs.
Related papers
- NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - A Spectral Analysis of Graph Neural Networks on Dense and Sparse Graphs [13.954735096637298]
We analyze how sparsity affects the graph spectra, and thus the performance of graph neural networks (GNNs) in node classification on dense and sparse graphs.
We show that GNNs can outperform spectral methods on sparse graphs, and illustrate these results with numerical examples on both synthetic and real graphs.
arXiv Detail & Related papers (2022-11-06T22:38:13Z) - FoSR: First-order spectral rewiring for addressing oversquashing in GNNs [0.0]
Graph neural networks (GNNs) are able to leverage the structure of graph data by passing messages along the edges of the graph.
We propose a computationally efficient algorithm that prevents oversquashing by systematically adding edges to the graph.
We find experimentally that our algorithm outperforms existing graph rewiring methods in several graph classification tasks.
arXiv Detail & Related papers (2022-10-21T07:58:03Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
Graph neural networks (GNNs) have been shown powerful capacity at modeling structural data.
We present a novel Graph Matching based GNN Pre-Training framework, called GMPT.
The proposed method can be applied to fully self-supervised pre-training and coarse-grained supervised pre-training.
arXiv Detail & Related papers (2022-03-03T09:53:53Z) - Neighborhood Random Walk Graph Sampling for Regularized Bayesian Graph
Convolutional Neural Networks [0.6236890292833384]
In this paper, we propose a novel algorithm called Bayesian Graph Convolutional Network using Neighborhood Random Walk Sampling (BGCN-NRWS)
BGCN-NRWS uses a Markov Chain Monte Carlo (MCMC) based graph sampling algorithm utilizing graph structure, reduces overfitting by using a variational inference layer, and yields consistently competitive classification results compared to the state-of-the-art in semi-supervised node classification.
arXiv Detail & Related papers (2021-12-14T20:58:27Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
We show that in typical heterphilous graphs, the edges may be directed, and whether to treat the edges as is or simply make them undirected greatly affects the performance of the GNN models.
We develop a model that adaptively learns the directionality of the graph, and exploits the underlying long-distance correlations between nodes.
arXiv Detail & Related papers (2021-11-19T08:54:21Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - GraphSVX: Shapley Value Explanations for Graph Neural Networks [81.83769974301995]
Graph Neural Networks (GNNs) achieve significant performance for various learning tasks on geometric data.
In this paper, we propose a unified framework satisfied by most existing GNN explainers.
We introduce GraphSVX, a post hoc local model-agnostic explanation method specifically designed for GNNs.
arXiv Detail & Related papers (2021-04-18T10:40:37Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
Graph neural networks (GNNs) are a popular class of parametric model for learning over graph-structured data.
Recent work has argued that GNNs primarily use the graph for feature smoothing, and have shown competitive results on benchmark tasks.
In this work, we ask whether these results can be extended to heterogeneous graphs, which encode multiple types of relationship between different entities.
arXiv Detail & Related papers (2020-11-19T06:03:35Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.