論文の概要: ChronoGAN: Supervised and Embedded Generative Adversarial Networks for Time Series Generation
- arxiv url: http://arxiv.org/abs/2409.14013v1
- Date: Sat, 21 Sep 2024 04:51:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 04:06:38.363778
- Title: ChronoGAN: Supervised and Embedded Generative Adversarial Networks for Time Series Generation
- Title(参考訳): ChronoGAN:時系列生成のための監視と組込み型生成対向ネットワーク
- Authors: MohammadReza EskandariNasab, Shah Muhammad Hamdi, Soukaina Filali Boubrahimi,
- Abstract要約: これらの問題を効果的に解決し緩和することを目的とした堅牢なフレームワークを導入します。
このフレームワークは、Autoencoderの生成した埋め込み空間の利点と、GANの対角的トレーニングダイナミクスを統合する。
我々は、安定度を高め、短命連続と短命連続の両方で効果的な一般化を保証するために、初期生成アルゴリズムと改良されたニューラルネットワークアーキテクチャを導入する。
- 参考スコア(独自算出の注目度): 0.9374652839580181
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generating time series data using Generative Adversarial Networks (GANs) presents several prevalent challenges, such as slow convergence, information loss in embedding spaces, instability, and performance variability depending on the series length. To tackle these obstacles, we introduce a robust framework aimed at addressing and mitigating these issues effectively. This advanced framework integrates the benefits of an Autoencoder-generated embedding space with the adversarial training dynamics of GANs. This framework benefits from a time series-based loss function and oversight from a supervisory network, both of which capture the stepwise conditional distributions of the data effectively. The generator functions within the latent space, while the discriminator offers essential feedback based on the feature space. Moreover, we introduce an early generation algorithm and an improved neural network architecture to enhance stability and ensure effective generalization across both short and long time series. Through joint training, our framework consistently outperforms existing benchmarks, generating high-quality time series data across a range of real and synthetic datasets with diverse characteristics.
- Abstract(参考訳): Generative Adversarial Networks (GANs) を用いた時系列データの生成は、収束の遅い、埋め込み空間における情報損失、不安定性、シリーズの長さによる性能変動など、いくつかの主要な課題を提示する。
これらの障害に対処するために、これらの問題に効果的に対処し緩和することを目的とした堅牢なフレームワークを導入する。
この高度なフレームワークは、Autoencoderの生成した埋め込みスペースの利点と、GANの対角的トレーニングダイナミクスを統合する。
このフレームワークは、時系列に基づく損失関数と、データの段階的条件分布を効果的にキャプチャする監視ネットワークの監視の恩恵を受ける。
ジェネレータは潜在空間内で機能し、識別器は特徴空間に基づいて本質的なフィードバックを提供する。
さらに、我々は、安定性を高め、短命連続と短命連続の両方で効果的な一般化を保証するために、初期生成アルゴリズムと改良されたニューラルネットワークアーキテクチャを導入する。
共同トレーニングを通じて、我々のフレームワークは既存のベンチマークを一貫して上回り、多様な特徴を持つ実データや合成データセットの範囲で高品質な時系列データを生成する。
関連論文リスト
- SeriesGAN: Time Series Generation via Adversarial and Autoregressive Learning [0.9374652839580181]
本稿では, 自己エンコーダ生成型埋め込み空間の利点と, GANの対角運動力学を融合した高度なフレームワークを提案する。
この方法は2つの識別器を用いており、1つはジェネレータを特に誘導し、もう1つはオートエンコーダとジェネレータの出力を洗練させる。
我々のフレームワークは高忠実な時系列データを生成するのに優れており、既存の最先端のベンチマークを一貫して上回っている。
論文 参考訳(メタデータ) (2024-10-28T16:49:03Z) - Temporal Feature Matters: A Framework for Diffusion Model Quantization [105.3033493564844]
拡散モデルはマルチラウンド・デノナイジングの時間ステップに依存している。
3つの戦略を含む新しい量子化フレームワークを導入する。
このフレームワークは時間情報のほとんどを保存し、高品質なエンドツーエンド生成を保証する。
論文 参考訳(メタデータ) (2024-07-28T17:46:15Z) - Concrete Dense Network for Long-Sequence Time Series Clustering [4.307648859471193]
時系列クラスタリングは、時間的パターンを発見するためのデータ分析において基本である。
深部時間クラスタリング手法は、ニューラルネットワークのエンドツーエンドトレーニングに標準k平均を組み込もうとしている。
LoSTerは、時系列クラスタリング問題に対する新しい密集型オートエンコーダアーキテクチャである。
論文 参考訳(メタデータ) (2024-05-08T12:31:35Z) - TSLANet: Rethinking Transformers for Time Series Representation Learning [19.795353886621715]
時系列データは、その固有の長短の依存関係によって特徴づけられる。
本稿では,時系列タスクの普遍的畳み込みモデルとして,新しい時系列軽量ネットワーク(TSLANet)を導入する。
我々の実験では、TSLANetは分類、予測、異常検出にまたがる様々なタスクにおいて最先端のモデルよりも優れていることを示した。
論文 参考訳(メタデータ) (2024-04-12T13:41:29Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
長期の都市移動予測は、都市施設やサービスの効果的管理において重要な役割を担っている。
伝統的に、都市移動データはビデオとして構成され、経度と緯度を基本的なピクセルとして扱う。
本研究では,都市におけるモビリティ予測の新たな視点について紹介する。
都市移動データを従来のビデオデータとして単純化するのではなく、複雑な時系列と見なす。
論文 参考訳(メタデータ) (2023-12-04T07:39:05Z) - PCF-GAN: generating sequential data via the characteristic function of measures on the path space [3.9983665898166425]
PCF-GANは、時系列分布の原理的表現としてパス特性関数(PCF)を識別器に組み込んだ新しいGANである。
我々は,PCF-GANが生成品質と復元品質の両方において,最先端のベースラインを一貫して上回っていることを示す。
論文 参考訳(メタデータ) (2023-05-21T17:05:03Z) - Dynamic Scheduling for Federated Edge Learning with Streaming Data [56.91063444859008]
我々は,長期的エネルギー制約のある分散エッジデバイスにおいて,トレーニングデータを時間とともにランダムに生成するフェデレーションエッジ学習(FEEL)システムを検討する。
限られた通信リソースとレイテンシ要件のため、各イテレーションでローカルトレーニングプロセスに参加するのはデバイスのサブセットのみである。
論文 参考訳(メタデータ) (2023-05-02T07:41:16Z) - FormerTime: Hierarchical Multi-Scale Representations for Multivariate
Time Series Classification [53.55504611255664]
formerTimeは、多変量時系列分類タスクの分類能力を改善する階層的表現モデルである。
1)時系列データから階層的なマルチスケール表現を学習し、(2)トランスフォーマーと畳み込みネットワークの強さを継承し、(3)自己維持メカニズムによって引き起こされる効率の課題に取り組む。
論文 参考訳(メタデータ) (2023-02-20T07:46:14Z) - Towards Generating Real-World Time Series Data [52.51620668470388]
時系列データ生成のための新しい生成フレームワーク - RTSGANを提案する。
RTSGANは、時系列インスタンスと固定次元潜在ベクトルの間のマッピングを提供するエンコーダデコーダモジュールを学習する。
不足した値の時系列を生成するために、RTSGANに観測埋め込み層と決定・生成デコーダを更に装備する。
論文 参考訳(メタデータ) (2021-11-16T11:31:37Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
本研究では,空間情報を用いた複雑な多次元時系列データを処理するための新しいディープセルリカレントニューラルネットワーク(DCRNN)アーキテクチャを提案する。
提案するアーキテクチャは,文献に比較して,学習可能なパラメータをかなり少なくしつつ,最先端の性能を実現している。
論文 参考訳(メタデータ) (2021-01-12T20:08:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。