論文の概要: Mitigating Exposure Bias in Score-Based Generation of Molecular Conformations
- arxiv url: http://arxiv.org/abs/2409.14014v1
- Date: Sat, 21 Sep 2024 04:54:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 04:06:38.361057
- Title: Mitigating Exposure Bias in Score-Based Generation of Molecular Conformations
- Title(参考訳): 分子コンフォーメーション生成における露光バイアスの緩和
- Authors: Sijia Wang, Chen Wang, Zhenhao Zhao, Jiqiang Zhang, Weiran Cai,
- Abstract要約: 分子配座生成に用いるスコアベース生成モデルにおける露出バイアスを測定する手法を提案する。
我々は,DPMのみ用に設計された手法から適応した新しい補償アルゴリズム Input Perturbation (IP) を設計する。
GEOM-Drugsデータセットの最先端性能はGEOM-QM9と同等である。
- 参考スコア(独自算出の注目度): 6.442534896075223
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Molecular conformation generation poses a significant challenge in the field of computational chemistry. Recently, Diffusion Probabilistic Models (DPMs) and Score-Based Generative Models (SGMs) are effectively used due to their capacity for generating accurate conformations far beyond conventional physics-based approaches. However, the discrepancy between training and inference rises a critical problem known as the exposure bias. While this issue has been extensively investigated in DPMs, the existence of exposure bias in SGMs and its effective measurement remain unsolved, which hinders the use of compensation methods for SGMs, including ConfGF and Torsional Diffusion as the representatives. In this work, we first propose a method for measuring exposure bias in SGMs used for molecular conformation generation, which confirms the significant existence of exposure bias in these models and measures its value. We design a new compensation algorithm Input Perturbation (IP), which is adapted from a method originally designed for DPMs only. Experimental results show that by introducing IP, SGM-based molecular conformation models can significantly improve both the accuracy and diversity of the generated conformations. Especially by using the IP-enhanced Torsional Diffusion model, we achieve new state-of-the-art performance on the GEOM-Drugs dataset and are on par on GEOM-QM9. We provide the code publicly at https://github.com/jia-975/torsionalDiff-ip.
- Abstract(参考訳): 分子配座生成は、計算化学の分野において重要な課題である。
近年, 拡散確率モデル (DPM) とスコアベース生成モデル (SGM) は, 従来の物理学的アプローチをはるかに超越した正確なコンフォメーションを生成する能力により, 効果的に利用されている。
しかし、トレーニングと推論の相違は、露光バイアスとして知られる重要な問題を引き起こす。
この問題はDPMにおいて広く研究されているが、SGMにおける露出バイアスの存在とその有効測定は未解決のままであり、ConfGFやTrusional DiffusionなどのSGMに対する補償手法の使用を妨げている。
本研究ではまず,分子配座生成に使用されるSGMの露出バイアスを測定する手法を提案する。
我々は,DPMのみ用に設計された手法から適応した新しい補償アルゴリズム Input Perturbation (IP) を設計する。
実験結果から,IPの導入により,SGMに基づく分子配座モデルにより,生成した配座の精度と多様性が著しく向上することが示唆された。
特に,IP-enhanced Torsional Diffusionモデルを用いることで,GEOM-Drugsデータセット上での新たな最先端性能を実現し,GEOM-QM9と同等となる。
コードをhttps://github.com/jia-975/torsionalDiff-ipで公開しています。
関連論文リスト
- Bellman Diffusion: Generative Modeling as Learning a Linear Operator in the Distribution Space [72.52365911990935]
本稿では,MDPの線形性を維持する新しいDGMフレームワークであるBellman Diffusionを紹介する。
この結果から,ベルマン拡散は分布RLタスクにおける従来のヒストグラムベースベースラインよりも1.5倍高速に収束し,精度の高い画像生成装置であることがわかった。
論文 参考訳(メタデータ) (2024-10-02T17:53:23Z) - Masked Diffusion Models are Secretly Time-Agnostic Masked Models and Exploit Inaccurate Categorical Sampling [47.82616476928464]
仮面拡散モデル (MDM) は離散データの生成モデルとして人気がある。
我々はMDMのトレーニングとサンプリングの両方が理論的に時間変数から解放されていることを示す。
一般に使用されている32ビット浮動小数点精度においても,まず基礎となる数値問題を同定した。
論文 参考訳(メタデータ) (2024-09-04T17:48:19Z) - Toward the Identifiability of Comparative Deep Generative Models [7.5479347719819865]
比較深部生成モデル(DGM)における識別可能性の理論を提案する。
これらのモデルは、一般的な混合関数のクラスにおいて識別性に欠けるが、混合関数が断片的アフィンであるときに驚くほど識別可能であることを示す。
また, モデルミス種別の影響についても検討し, 従来提案されていた比較DGMの正則化手法が, 潜伏変数の数が事前に分かっていない場合に, 識別可能性を高めることを実証的に示す。
論文 参考訳(メタデータ) (2024-01-29T06:10:54Z) - Uncertainty-biased molecular dynamics for learning uniformly accurate interatomic potentials [25.091146216183144]
アクティブラーニングは、偏りや偏りのない分子動力学を用いて候補プールを生成する。
既存のバイアスやバイアスのないMDシミュレーション手法は、稀な事象や外挿領域を見逃しがちである。
この研究は、MLIPのエネルギー不確実性に偏ったMDが同時に外挿領域と稀な事象を捉えることを示した。
論文 参考訳(メタデータ) (2023-12-03T14:39:14Z) - Diversity-Measurable Anomaly Detection [106.07413438216416]
本稿では,再構成の多様性を高めるため,DMAD(Diversity-Measurable Anomaly Detection)フレームワークを提案する。
PDMは基本的に、変形を埋め込みから分離し、最終的な異常スコアをより信頼性を高める。
論文 参考訳(メタデータ) (2023-03-09T05:52:42Z) - Deep Generative Modeling on Limited Data with Regularization by
Nontransferable Pre-trained Models [32.52492468276371]
本稿では,限られたデータを用いた生成モデルの分散を低減するために,正規化深層生成モデル(Reg-DGM)を提案する。
Reg-DGMは、ある発散の重み付け和とエネルギー関数の期待を最適化するために、事前訓練されたモデルを使用する。
実験的に、様々な事前訓練された特徴抽出器とデータ依存エネルギー関数により、Reg-DGMはデータ制限のある強力なDGMの生成性能を一貫して改善する。
論文 参考訳(メタデータ) (2022-08-30T10:28:50Z) - ER: Equivariance Regularizer for Knowledge Graph Completion [107.51609402963072]
我々は、新しい正規化器、すなわち等分散正規化器(ER)を提案する。
ERは、頭と尾のエンティティ間の意味的等価性を利用することで、モデルの一般化能力を高めることができる。
実験結果から,最先端関係予測法よりも明確かつ実質的な改善が示された。
論文 参考訳(メタデータ) (2022-06-24T08:18:05Z) - GeoDiff: a Geometric Diffusion Model for Molecular Conformation
Generation [102.85440102147267]
分子配座予測のための新しい生成モデルGeoDiffを提案する。
GeoDiffは、既存の最先端のアプローチよりも優れているか、あるいは同等であることを示す。
論文 参考訳(メタデータ) (2022-03-06T09:47:01Z) - Riemannian Score-Based Generative Modeling [56.20669989459281]
経験的性能を示すスコアベース生成モデル(SGM)を紹介する。
現在のSGMは、そのデータが平坦な幾何学を持つユークリッド多様体上で支えられているという前提を定めている。
これにより、ロボット工学、地球科学、タンパク質モデリングの応用にこれらのモデルを使用することができない。
論文 参考訳(メタデータ) (2022-02-06T11:57:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。