Quantum enhanced stratification of Breast Cancer: exploring quantum expressivity for real omics data
- URL: http://arxiv.org/abs/2409.14089v1
- Date: Sat, 21 Sep 2024 10:00:09 GMT
- Title: Quantum enhanced stratification of Breast Cancer: exploring quantum expressivity for real omics data
- Authors: Valeria Repetto, Elia Giuseppe Ceroni, Giuseppe Buonaiuto, Romina D'Aurizio,
- Abstract summary: Quantum Kernels (QK) could effectively classify subtypes of Breast Cancer (BC) patients on the basis of molecular characteristics.
Our results show that QKs yield comparable clustering results with classical methods while using fewer data points.
We found that less expressive encodings showed a higher resilience to noise, indicating that the computational pipeline can be reliably implemented on the NISQ devices.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum Machine Learning (QML) is considered one of the most promising applications of Quantum Computing in the Noisy Intermediate Scale Quantum (NISQ) era for the impact it is thought to have in the near future. Although promising theoretical assumptions, the exploration of how QML could foster new discoveries in Medicine and Biology fields is still in its infancy with few examples. In this study, we aimed to assess whether Quantum Kernels (QK) could effectively classify subtypes of Breast Cancer (BC) patients on the basis of molecular characteristics. We performed an heuristic exploration of encoding configurations with different entanglement levels to determine a trade-off between kernel expressivity and performances. Our results show that QKs yield comparable clustering results with classical methods while using fewer data points, and are able to fit the data with a higher number of clusters. Additionally, we conducted the experiments on the Quantum Processing Unit (QPU) to evaluate the effect of noise on the outcome. We found that less expressive encodings showed a higher resilience to noise, indicating that the computational pipeline can be reliably implemented on the NISQ devices. Our findings suggest that QK methods show promises for application in Precision Oncology, especially in scenarios where the dataset is limited in size and a granular non-trivial stratification of complex molecular data cannot be achieved classically.
Related papers
- Enhancing Drug Discovery: Quantum Machine Learning for QSAR Prediction with Incomplete Data [0.0]
It has been demonstrated that QSAR can be accurately predicted by machine learning.
Data with poor quality and limited availability are always the most common and critical issues for medical-related applications for machine learning.
We try to demonstrate the quantum advantages in the generalization power of the quantum classifier under conditions of limited data availability and a reduced number of features.
arXiv Detail & Related papers (2025-01-23T05:39:08Z) - Robust Quantum Reservoir Computing for Molecular Property Prediction [0.5399129278613575]
We propose the quantum reservoir computing (QRC) approach to predict the biological activity of potential drug molecules.
We observe more robust QRC performance as the size of the dataset decreases.
In addition, we leverage the uniform manifold approximation and projection technique to analyze structural changes as classical features are transformed through quantum dynamics.
arXiv Detail & Related papers (2024-12-09T18:49:18Z) - Empirical Quantum Advantage Analysis of Quantum Kernel in Gene Expression Data [0.0]
We focus on constraints like finding suitable datasets where quantum advantage is achievable and evaluating the relevance of features chosen by classical and quantum methods.
For our experimental validation, we selected the gene expression dataset, given the critical role of genetic variations in regulating physiological behavior and disease susceptibility.
arXiv Detail & Related papers (2024-11-11T15:34:53Z) - CompressedMediQ: Hybrid Quantum Machine Learning Pipeline for High-Dimensional Neuroimaging Data [1.3359321655273804]
This paper introduces CompressedMediQ, a novel hybrid quantum-classical machine learning pipeline.
It addresses the computational challenges associated with high-dimensional multi-class neuroimaging data analysis.
arXiv Detail & Related papers (2024-09-13T07:03:01Z) - GQHAN: A Grover-inspired Quantum Hard Attention Network [53.96779043113156]
Grover-inspired Quantum Hard Attention Mechanism (GQHAM) is proposed.
GQHAN adeptly surmounts the non-differentiability hurdle, surpassing the efficacy of extant quantum soft self-attention mechanisms.
The proposal of GQHAN lays the foundation for future quantum computers to process large-scale data, and promotes the development of quantum computer vision.
arXiv Detail & Related papers (2024-01-25T11:11:16Z) - QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
A Quantum Kernel Self-Attention Mechanism (QKSAM) is introduced to combine the data representation merit of Quantum Kernel Methods (QKM) with the efficient information extraction capability of SAM.
A Quantum Kernel Self-Attention Network (QKSAN) framework is proposed based on QKSAM, which ingeniously incorporates the Deferred Measurement Principle (DMP) and conditional measurement techniques.
Four QKSAN sub-models are deployed on PennyLane and IBM Qiskit platforms to perform binary classification on MNIST and Fashion MNIST.
arXiv Detail & Related papers (2023-08-25T15:08:19Z) - Quantum Imitation Learning [74.15588381240795]
We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
arXiv Detail & Related papers (2023-04-04T12:47:35Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Hybrid Quantum-Classical Graph Convolutional Network [7.0132255816377445]
This research provides a hybrid quantum-classical graph convolutional network (QGCNN) for learning HEP data.
The proposed framework demonstrates an advantage over classical multilayer perceptron and convolutional neural networks in the aspect of number of parameters.
In terms of testing accuracy, the QGCNN shows comparable performance to a quantum convolutional neural network on the same HEP dataset.
arXiv Detail & Related papers (2021-01-15T16:02:52Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.