Addressing and Visualizing Misalignments in Human Task-Solving Trajectories
- URL: http://arxiv.org/abs/2409.14191v1
- Date: Sat, 21 Sep 2024 16:38:22 GMT
- Title: Addressing and Visualizing Misalignments in Human Task-Solving Trajectories
- Authors: Sejin Kim, Hosung Lee, Sundong Kim,
- Abstract summary: We propose a visualization tool and an algorithm to detect and categorize discrepancies in trajectory data.
We expect that eliminating these misalignments could significantly improve the utility of trajectory data for AI model training.
- Score: 5.166083532861163
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The effectiveness of AI model training hinges on the quality of the trajectory data used, particularly in aligning the model's decision with human intentions. However, in the human task-solving trajectories, we observe significant misalignments between human intentions and the recorded trajectories, which can undermine AI model training. This paper addresses the challenges of these misalignments by proposing a visualization tool and a heuristic algorithm designed to detect and categorize discrepancies in trajectory data. Although the heuristic algorithm requires a set of predefined human intentions to function, which we currently cannot extract, the visualization tool offers valuable insights into the nature of these misalignments. We expect that eliminating these misalignments could significantly improve the utility of trajectory data for AI model training. We also propose that future work should focus on developing methods, such as Topic Modeling, to accurately extract human intentions from trajectory data, thereby enhancing the alignment between user actions and AI learning processes.
Related papers
- Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
Machine unlearning -- efficiently removing a small "forget set" training data on a pre-divertrained machine learning model -- has recently attracted interest.
Recent research shows that machine unlearning techniques do not hold up in such a challenging setting.
arXiv Detail & Related papers (2024-10-30T17:20:10Z) - Robust Machine Learning by Transforming and Augmenting Imperfect
Training Data [6.928276018602774]
This thesis explores several data sensitivities of modern machine learning.
We first discuss how to prevent ML from codifying prior human discrimination measured in the training data.
We then discuss the problem of learning from data containing spurious features, which provide predictive fidelity during training but are unreliable upon deployment.
arXiv Detail & Related papers (2023-12-19T20:49:28Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
Trajectory forecasting models, employed in fields such as robotics, autonomous vehicles, and navigation, face challenges in real-world scenarios.
This dataset provides comprehensive data, including the locations of all agents, scene images, and point clouds, all from the robot's perspective.
The objective is to predict the future positions of agents relative to the robot using raw sensory input data.
arXiv Detail & Related papers (2023-11-05T18:59:31Z) - Visual Affordance Prediction for Guiding Robot Exploration [56.17795036091848]
We develop an approach for learning visual affordances for guiding robot exploration.
We use a Transformer-based model to learn a conditional distribution in the latent embedding space of a VQ-VAE.
We show how the trained affordance model can be used for guiding exploration by acting as a goal-sampling distribution, during visual goal-conditioned policy learning in robotic manipulation.
arXiv Detail & Related papers (2023-05-28T17:53:09Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
We learn the residual errors between a dynamic and/or simulator model and the real robot.
We show that with the learned residual errors, we can further close the reality gap between dynamic models, simulations, and actual hardware.
arXiv Detail & Related papers (2022-09-07T15:15:12Z) - Modeling human intention inference in continuous 3D domains by inverse
planning and body kinematics [31.421686048250827]
We describe a computational framework for evaluating models of goal inference in the domain of 3D motor actions.
We evaluate our framework in three behavioural experiments using a novel Target Reaching Task, in which human observers infer intentions of actors reaching for targets among distracts.
We show that human observers indeed rely on inverse body kinematics in such scenarios, suggesting that modeling body kinematic can improve performance of inference algorithms.
arXiv Detail & Related papers (2021-12-02T00:55:58Z) - Skill Preferences: Learning to Extract and Execute Robotic Skills from
Human Feedback [82.96694147237113]
We present Skill Preferences, an algorithm that learns a model over human preferences and uses it to extract human-aligned skills from offline data.
We show that SkiP enables a simulated kitchen robot to solve complex multi-step manipulation tasks.
arXiv Detail & Related papers (2021-08-11T18:04:08Z) - Towards Model-informed Precision Dosing with Expert-in-the-loop Machine
Learning [0.0]
We consider a ML framework that may accelerate model learning and improve its interpretability by incorporating human experts into the model learning loop.
We propose a novel human-in-the-loop ML framework aimed at dealing with learning problems that the cost of data annotation is high.
With an application to precision dosing, our experimental results show that the approach can learn interpretable rules from data and may potentially lower experts' workload.
arXiv Detail & Related papers (2021-06-28T03:45:09Z) - Multimodal Deep Generative Models for Trajectory Prediction: A
Conditional Variational Autoencoder Approach [34.70843462687529]
We provide a self-contained tutorial on a conditional variational autoencoder approach to human behavior prediction.
The goals of this tutorial paper are to review and build a taxonomy of state-of-the-art methods in human behavior prediction.
arXiv Detail & Related papers (2020-08-10T03:18:27Z) - Learning Predictive Models From Observation and Interaction [137.77887825854768]
Learning predictive models from interaction with the world allows an agent, such as a robot, to learn about how the world works.
However, learning a model that captures the dynamics of complex skills represents a major challenge.
We propose a method to augment the training set with observational data of other agents, such as humans.
arXiv Detail & Related papers (2019-12-30T01:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.